The Finite Element Method: Fundamentals and Applications demonstrates the generality of the finite element method by providing a unified treatment of fundamentals and a broad coverage of applications. Topics covered include field problems and their approximate solutions; the variational method based on the Hilbert space; and the Ritz finite element method. Finite element applications in solid and structural mechanics are also discussed. Comprised of 16 chapters, this book begins with an introduction to the formulation and classification of physical problems, followed by a review of field or continuum problems and their approximate solutions by the method of trial functions. It is shown that the finite element method is a subclass of the method of trial functions and that a finite element formulation can, in principle, be developed for most trial function procedures. Variational and residual trial function methods are considered in some detail and their convergence is examined. After discussing the calculus of variations, both in classical and Hilbert space form, the fundamentals of the finite element method are analyzed. The variational approach is illustrated by outlining the Ritz finite element method. The application of the finite element method to solid and structural mechanics is also considered. This monograph will appeal to undergraduate and graduate students, engineers, scientists, and applied mathematicians.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.