The authors study the moments of equilibrium measures for iterated function systems (IFSs) and draw connections to operator theory. Their main object of study is the infinite matrix which encodes all the moment data of a Borel measure on $\mathbb{R}^d$ or $\mathbb{C}$. To encode the salient features of a given IFS into precise moment data, they establish an interdependence between IFS equilibrium measures, the encoding of the sequence of moments of these measures into operators, and a new correspondence between the IFS moments and this family of operators in Hilbert space. For a given IFS, the authors' aim is to establish a functorial correspondence in such a way that the geometric transformations of the IFS turn into transformations of moment matrices, or rather transformations of the operators that are associated with them.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.