Maximum Principles for the Hill's Equation focuses on the application of these methods to nonlinear equations with singularities (e.g. Brillouin-bem focusing equation, Ermakov-Pinney,...) and for problems with parametric dependence. The authors discuss the properties of the related Green’s functions coupled with different boundary value conditions. In addition, they establish the equations’ relationship with the spectral theory developed for the homogeneous case, and discuss stability and constant sign solutions. Finally, reviews of present classical and recent results made by the authors and by other key authors are included. Evaluates classical topics in the Hill’s equation that are crucial for understanding modern physical models and non-linear applications Describes explicit and effective conditions on maximum and anti-maximum principles Collates information from disparate sources in one self-contained volume, with extensive referencing throughout
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.