We investigate the lattice, invented by W. D. Neumann in 1974, formed by the class of all varieties under the quasi-ordering "[script]V is interpretable in [script]W." The lattice is found to be non-modular and a proper class. Various familiar varieties are found to be [logical conjunction symbol {up arrow}]-irreducible (or prime) and various filters (especially Mal'tsev classes) are found to be indecomposable (or prime). Many familiar varieties are found to be inequivalent in the lattice, using a new technique of SIN algebras. Seven figures are included which document the known relationships between some sixty known or easily describable varieties and varietal families.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.