An accessible and self-contained introduction to recent advances in fluid dynamics, this book provides an authoritative account of the Euler equations for a perfect incompressible fluid. The book begins with a derivation of the Euler equations from a variational principle. It then recalls the relations on vorticity and pressure and proposes various weak formulations. The book develops the key tools for analysis: the Littlewood-Paley theory, action of Fourier multipliers on L spaces, and partial differential calculus. These techniques are used to prove various recent results concerning vortex patches or sheets; the main results include the persistence of the smoothness of the boundary of a vortex patch, even if that smoothness allows singular points, and the existence of weak solutions of the vorticity sheet type. The text also presents properties of microlocal (analytic or Gevrey) regularity of the solutions of Euler equations and links such properties to the smoothness in time of the flow of the solution vector field.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.