Real-world systems that involve some non-smooth change are often well-modeled by piecewise-smooth systems. However there still remain many gaps in the mathematical theory of such systems. This doctoral thesis presents new results regarding bifurcations of piecewise-smooth, continuous, autonomous systems of ordinary differential equations and maps. Various codimension-two, discontinuity induced bifurcations are unfolded in a rigorous manner. Several of these unfoldings are applied to a mathematical model of the growth of Saccharomyces cerevisiae (a common yeast). The nature of resonance near border-collision bifurcations is described; in particular, the curious geometry of resonance tongues in piecewise-smooth continuous maps is explained in detail. NeimarkSacker-like border-collision bifurcations are both numerically and theoretically investigated. A comprehensive background section is conveniently provided for those with little or no experience in piecewise-smooth systems.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.