This book introduces a method of research which can be used in various fields of mathematics. It examines, in a systematic way, the quantitative characterizations of the “deviation from a (given) property”, called the “defect of a property”, in: set theory; topology; measure theory; real, complex and functional analysis; algebra; geometry; number theory; fuzzy mathematics.Besides well-known “defects”, the book introduces and studies new ones, such as: measures of noncompactness for fuzzy sets; fuzzy and intuitionistic entropies; the defect of (sub, super)additivity; complementarity; monotonicity for set functions; the defect of convexity; monotonicity; differentiability for real functions; the defect of equality for inequalities; the defect of orthogonality for sets and defects of properties for linear operators in normed spaces; defects of properties (commutativity, associativity, etc.) for binary operations; defects of orthogonality and parallelness in Euclidean and non-Euclidean geometries; defects of integer, perfect, prime and amicable numbers; the defect of tautology in fuzzy logic.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.