The purpose of coding theory is the design of efficient systems for the transmission of information. The mathematical treatment leads to certain finite structures: the error-correcting codes. Surprisingly problems which are interesting for the design of codes turn out to be closely related to problems studied partly earlier and independently in pure mathematics. This book is about an example of such a connection: the relation between codes and lattices. Lattices are studied in number theory and in the geometry of numbers. Many problems about codes have their counterpart in problems about lattices and sphere packings. We give a detailed introduction to these relations including recent results of G. van der Geer and F. Hirzebruch. Let us explain the history of this book. In [LPS82] J. S. Leon, V. Pless, and N. J. A. Sloane considered the Lee weight enumerators of self-dual codes over the prime field of characteristic 5. They wrote in the introduction to their paper: "The weight enumerator of anyone of the codes . . . is strongly constrained: it must be invariant under a three-dimensional representation of the icosahedral group. These invariants were already known to Felix Klein, and the consequences for coding theory were discovered by Gleason and Pierce (and independently by the third author) . . . (It is worth mentioning that precisely the same invariants have recently been studied by Hirzebruch in connection with cusps of the Hilbert modular surface associated with Q( J5).
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.