This monograph integrates unitary symmetry and combinatorics, showing in great detail how the coupling of angular momenta in quantum mechanics is related to binary trees, trivalent trees, cubic graphs, MacMahon's master theorem, and other basic combinatorial concepts. A comprehensive theory of recoupling matrices for quantum angular momentum is developed. For the general unitary group, polynomial forms in many variables called matrix Schur functions have the remarkable property of giving all irreducible representations of the general unitary group and are the basic objects of study. The structure of these irreducible polynomials and the reduction of their Kronecker product is developed in detail, as is the theory of tensor operators.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.