This elementary introduction pays special attention to aspects of tensor calculus and relativity that students tend to find most difficult. Its use of relatively unsophisticated mathematics in the early chapters allows readers to develop their confidence within the framework of Cartesian coordinates before undertaking the theory of tensors in curved spaces and its application to general relativity theory.
Topics include the special principle of relativity and Lorentz transformations; orthogonal transformations and Cartesian tensors; special relativity mechanics and electrodynamics; general tensor calculus and Riemannian space; and the general theory of relativity, including a focus on black holes and gravitational waves. The text concludes with a chapter offering a sound background in applying the principles of general relativity to cosmology. Numerous exercises advance the theoretical developments of the main text, thus enhancing this volume’s appeal to students of applied mathematics and physics at both undergraduate and postgraduate levels. Preface. List of Constants. References. Bibliography.