We investigate the issue of model uncertainty in cross-country growth regressions using Bayesian model averaging (BMA). We find that the posterior probability is distributed among many models, suggesting the superiority of BMA over any single model. Out-of-sample predictive results support that claim. In contrast with Levine and Renelt (1992), our results broadly support the more “optimistic” conclusion of Sala-i-Martin (1997b), namely, that some variables are important regressors for explaining cross-country growth patterns. However, the variables we identify as most useful for growth regression differ substantially from Sala-i-Martin’s results.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.