Axiomatic set theory is the concern of this book. More particularly, the authors prove results about the coding of models M, of Zermelo-Fraenkel set theory together with the Generalized Continuum Hypothesis by using a class 'forcing' construction. By this method they extend M to another model L[a] with the same properties. L[a] is Gödels universe of 'constructible' sets L, together with a set of integers a which code all the cardinality and cofinality structure of M. Some applications are also considered. Graduate students and research workers in set theory and logic will be especially interested by this account.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.