This monograph is focused on control law design methods for asymptotic tracking and disturbance rejection in the presence of uncertainties. The methods are based on adaptive implementation of the Internal Model Principle (IMP). The monograph shows how this principle can be applied to the problems of asymptotic rejection/tracking of a priori uncertain exogenous signals for linear and nonlinear plants with known and unknown parameters.
The book begins by introducing the problems of adaptive control, the challenges that are faced, modern methods and an overview of the IMP. It then introduces special observers for uncertain exogeneous signals affecting linear and nonlinear systems with known and unknown parameters. The basic algorithms of adaptation applied to the canonical closed-loop error models are presented. The authors then address the systematic design of adaptive systems for asymptotic rejection/tracking of a priori uncertain exosignals. The monograph also discusses the adaptive rejection/tracking of a priori uncertain exogenous signals in systems with input delay, the problems of performance improvement in disturbance rejection and reference tracking and the issue of robustness of closed-loop systems.
Adaptive Regulation provides a systematic discussion of the IMP applied to a variety of control problems, making it of interest to researchers and industrial practitioners.