Constructive methods developed in the framework of analytic functions effectively extend the use of mathematical constructions, both within different branches of mathematics and to other disciplines. This monograph presents some constructive methods-based primarily on original techniques-for boundary value problems, both linear and nonlinear. From among the many applications to which these methods can apply, the authors focus on interesting problems associated with composite materials with a finite number of inclusions. How far can one go in the solutions of problems in nonlinear mechanics and physics using the ideas of analytic functions? What is the difference between linear and nonlinear cases from the qualitative point of view? What kinds of additional techniques should one use in investigating nonlinear problems? Constructive Methods for Linear and Nonlinear Boundary Value Problems serves to answer these questions, and presents many results to Westerners for the first time. Among the most interesting of these is the complete solution of the Riemann-Hilbert problem for multiply connected domains. The results offered in Constructive Methods for Linear and Nonlinear Boundary Value Problems are prepared for direct application. A historical survey along with background material, and an in-depth presentation of practical methods make this a self-contained volume useful to experts in analytic function theory, to non-specialists, and even to non-mathematicians who can apply the methods to their research in mechanics and physics.
Asymptotic Methods for Engineers is based on the authors’ many years of practical experience in the application of asymptotic methods to solve engineering problems. This book is devoted to modern asymptotic methods (AM), which is widely used in engineering, applied sciences, physics, and applied mathematics. Avoiding complex formal calculations and justifications, the book’s main goal is to describe the main ideas and algorithms. Moreover, not only is there a presentation of the main AM, but there is also a focus on demonstrating their unity and inseparable connection with the methods of summation and asymptotic interpolation. The book will be useful for students and researchers from applied mathematics and physics and of interest to doctoral and graduate students, university and industry professors from various branches of engineering (mechanical, civil, electro-mechanical, etc.).
Approximate Models of Mechanics of Composites: An Asymptotic Approach is an essential guide to constructing asymptotic models and mathematical methods to correctly identify the mechanical behavior of composites. It provides methodology for predicting and evaluating composite behavior in various structures, leading to accurate mathematical and physical assessments. The book estimates the error of approximations through comparing asymptotic solutions with the results of numerical and analytical solutions to gain a holistic view of the data. The authors have developed asymptotic models based on mathematical and physical rigorous approaches, which include three-phase models of fibrous composites, a modernized three-phase composite model with cylindrical inclusions, and models of two-dimensional composites of hexagonal structure. Also covered are two-phase models of composites related to the Maxwell formula and a percolation transition model for elastic problems based on the self-consistency method and Padé approximations. By obtaining analytical expressions to effectively characterize composite materials, their physical and geometric parameters can be accurately assessed. This book suits engineers and students working in material science, mechanical engineering, physics, and mathematics, as well as composite materials in industries such as construction, transport, aerospace, and chemical engineering.
This book uses asymptotic methods to obtain simple approximate analytic solutions to various problems within mechanics, notably wave processes in heterogeneous materials. Presenting original solutions to common issues within mechanics, this book builds upon years of research to demonstrate the benefits of implementing asymptotic techniques within mechanical engineering and material science. Focusing on linear and nonlinear wave phenomena in complex micro-structured solids, the book determines their global characteristics through analysis of their internal structure, using homogenization and asymptotic procedures, in line with the latest thinking within the field. The book’s cutting-edge methodology can be applied to optimal design, non-destructive control and in deep seismic sounding, providing a valuable alternative to widely used numerical methods. Using case studies, the book covers topics such as elastic waves in nonhomogeneous materials, regular and chaotic dynamics based on continualisation and discretization and vibration localization in 1D Linear and Nonlinear lattices. The book will be of interest to students, research engineers, and professionals specialising in mathematics and physics as well as mechanical and civil engineering.
In this book the authors show that it is possible to construct efficient computationally oriented models of multi-parameter complex systems by using asymptotic methods, which can, owing to their simplicity, be directly used for controlling processes arising in connection with composite material systems. The book focuses on this asymptotic-modeling-based approach because it allows us to define the most important out of numerous parameters describing the system, or, in other words, the asymptotic methods allow us to estimate the sensitivity of the system parameters. Further, the book addresses the construction of nonlocal and higher-order homogenized models. Local fields on the micro-level and the influence of so-called non-ideal contact between the matrix and inclusions are modeled and investigated. The book then studies composites with non-regular structure and cluster type composite conductivity, and analyzes edge effects in fiber composite materials. Transition of load from a fiber to a matrix for elastic and viscoelastic composites, various types of fiber composite fractures, and buckling of fibers in fiber-reinforced composites is also investigated. Last but not least, the book includes studies on perforated membranes, plates, and shells, as well as the asymptotic modeling of imperfect nonlinear interfaces.
In this book a detailed and systematic treatment of asymptotic methods in the theory of plates and shells is presented. The main features of the book are the basic principles of asymptotics and their applications, traditional approaches such as regular and singular perturbations, as well as new approaches such as the composite equations approach. The book introduces the reader to the field of asymptotic simplification of the problems of the theory of plates and shells and will be useful as a handbook of methods of asymptotic integration. Providing a state-of-the-art review of asymptotic applications, this book will be useful as an introduction to the field for novices as well as a reference book for specialists.
This book provides a systematic treatment of the geometrical and transport properties of fractures, fracture networks, and fractured porous media. It is divided into two major parts. The first part deals with geometry of individual fractures and of fracture networks. The use of the dimensionless density rationalizes the results for the percolation threshold of the networks. It presents the crucial advantage of grouping the numerical data for various fracture shapes. The second part deals mainly with permeability under steady conditions of fractures, fracture networks, and fractured porous media. Again the results for various types of networks can be rationalized by means of the dimensionless density. A chapter is dedicated to two phase flow in fractured porous media.
Introduction to Mathematical Modeling and Computer Simulations is written as a textbook for readers who want to understand the main principles of Modeling and Simulations in settings that are important for the applications, without using the profound mathematical tools required by most advanced texts. It can be particularly useful for applied mathematicians and engineers who are just beginning their careers. The goal of this book is to outline Mathematical Modeling using simple mathematical descriptions, making it accessible for first- and second-year students. Chapter 1 and the Preface of this book is freely available as a downloadable Open Access PDF under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license available at http: //www.taylorfrancis.com/books/e/9781315277240
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.