Bernstein functions appear in various fields of mathematics, e.g. probability theory, potential theory, operator theory, functional analysis and complex analysis – often with different definitions and under different names. Among the synonyms are `Laplace exponent' instead of Bernstein function, and complete Bernstein functions are sometimes called `Pick functions', `Nevanlinna functions' or `operator monotone functions'. This monograph – now in its second revised and extended edition – offers a self-contained and unified approach to Bernstein functions and closely related function classes, bringing together old and establishing new connections. For the second edition the authors added a substantial amount of new material. As in the first edition Chapters 1 to 11 contain general material which should be accessible to non-specialists, while the later Chapters 12 to 15 are devoted to more specialized topics. An extensive list of complete Bernstein functions with their representations is provided.
Stable Lévy processes and related stochastic processes play an important role in stochastic modelling in applied sciences, in particular in financial mathematics. This book is about the potential theory of stable stochastic processes. It also deals with related topics, such as the subordinate Brownian motions (including the relativistic process) and Feynman–Kac semigroups generated by certain Schrödinger operators. The authors focus on classes of stable and related processes that contain the Brownian motion as a special case. This is the first book devoted to the probabilistic potential theory of stable stochastic processes, and, from the analytical point of view, of the fractional Laplacian. The introduction is accessible to non-specialists and provides a general presentation of the fundamental objects of the theory. Besides recent and deep scientific results the book also provides a didactic approach to its topic, as all chapters have been tested on a wide audience, including young mathematicians at a CNRS/HARP Workshop, Angers 2006. The reader will gain insight into the modern theory of stable and related processes and their potential analysis with a theoretical motivation for the study of their fine properties.
Stable Lévy processes and related stochastic processes play an important role in stochastic modelling in applied sciences, in particular in financial mathematics. This book is about the potential theory of stable stochastic processes. It also deals with related topics, such as the subordinate Brownian motions (including the relativistic process) and Feynman–Kac semigroups generated by certain Schrödinger operators. The authors focus on classes of stable and related processes that contain the Brownian motion as a special case. This is the first book devoted to the probabilistic potential theory of stable stochastic processes, and, from the analytical point of view, of the fractional Laplacian. The introduction is accessible to non-specialists and provides a general presentation of the fundamental objects of the theory. Besides recent and deep scientific results the book also provides a didactic approach to its topic, as all chapters have been tested on a wide audience, including young mathematicians at a CNRS/HARP Workshop, Angers 2006. The reader will gain insight into the modern theory of stable and related processes and their potential analysis with a theoretical motivation for the study of their fine properties.
This text is a self-contained and unified approach to Bernstein functions and their subclasses, bringing together old and establishing new connections. Applications of Bernstein functions in different fields of mathematics are given, with special attention to interpretations in probability theory. An extensive list of complete Bernstein functions with their representations is provided. A self-contained and unified approach to the topic With applications to various fields of mathematics, such as probability theory, potential theory, operator theory, integral equations, functional calculi and complex analysis With an extensive list of complete Bernstein functions. Additional material and corrections can be found on theauthors' website.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.