A fully comprehensive examination of state-of-the-art technologies for measurement at the small scale • Highlights the advanced research work from industry and academia in micro-nano devices test technology • Written at both introductory and advanced levels, provides the fundamentals and theories • Focuses on the measurement techniques for characterizing MEMS/NEMS devices
Computer-based information technologies have been extensively used to help industries manage their processes and information systems hereby - come their nervous center. More specially, databases are designed to s- port the data storage, processing, and retrieval activities related to data management in information systems. Database management systems p- vide efficient task support and database systems are the key to impleme- ing industrial data management. Industrial data management requires da- base technique support. Industrial applications, however, are typically data and knowledge intensive applications and have some unique character- tics that makes their management difficult. Besides, some new techniques such as Web, artificial intelligence, and etc. have been introduced into - dustrial applications. These unique characteristics and usage of new te- nologies have put many potential requirements on industrial data mana- ment, which challenge today’s database systems and promote their evolvement. Viewed from database technology, information modeling in databases can be identified at two levels: (conceptual) data modeling and (logical) database modeling. This results in conceptual (semantic) data model and logical database model. Generally a conceptual data model is designed and then the designed conceptual data model will be transformed into a chosen logical database schema. Database systems based on logical database model are used to build information systems for data mana- ment. Much attention has been directed at conceptual data modeling of - dustrial information systems. Product data models, for example, can be views as a class of semantic data models (i. e.
Fuzzy Database Modeling with XML aims to provide a single record of current research and practical applications in the fuzzy databases. This volume is the outgrowth of research the author has conducted in recent years. Fuzzy Database Modeling with XML introduces state-of-the-art information to the database research, while at the same time serving the information technology professional faced with a non-traditional application that defeats conventional approaches. The research on fuzzy conceptual models and fuzzy object-oriented databases is receiving increasing attention, in addition to fuzzy relational database models. With rapid advances in network and internet techniques as well, the databases have been applied under the environment of distributed information systems. It is essential in this case to integrate multiple fuzzy database systems. Since databases are commonly employed to store and manipulate XML data, additional requirements are necessary to model fuzzy information with XML. Secondly, this book maps fuzzy XML model to the fuzzy databases. Very few efforts at investigating these issues have thus far occurred. Fuzzy Database Modeling with XML is designed for a professional audience of researchers and practitioners in industry. This book is also suitable for graduate-level students in computer science.
This book offers a complete understanding of the notions, techniques, and methods related to the research and developments of web-based e-learning systems"--Provided by publisher.
This book goes to great depth concerning the fast growing topic of technologies and approaches of fuzzy logic in the Semantic Web. The topics of this book include fuzzy description logics and fuzzy ontologies, queries of fuzzy description logics and fuzzy ontology knowledge bases, extraction of fuzzy description logics and ontologies from fuzzy data models, storage of fuzzy ontology knowledge bases in fuzzy databases, fuzzy Semantic Web ontology mapping, and fuzzy rules and their interchange in the Semantic Web. The book aims to provide a single record of current research in the fuzzy knowledge representation and reasoning for the Semantic Web. The objective of the book is to provide the state of the art information to researchers, practitioners and graduate students of the Web intelligence and at the same time serve the knowledge and data engineering professional faced with non-traditional applications that make the application of conventional approaches difficult or impossible.
Among the various multi-level formulations of mathematical models in decision making processes, this book focuses on the bi-level model. Being the most frequently used, the bi-level model addresses conflicts which exist in multi-level decision making processes. From the perspective of bi-level structure and uncertainty, this book takes real-life problems as the background, focuses on the so-called random-like uncertainty, and develops the general framework of random-like bi-level decision making problems. The random-like uncertainty considered in this book includes random phenomenon, random-overlapped random (Ra-Ra) phenomenon and fuzzy-overlapped random (Ra-Fu) phenomenon. Basic theory, models, algorithms and practical applications for different types of random-like bi-level decision making problems are also presented in this book.
This book systemically presents the latest research findings in fuzzy RDF data modeling and management. Fuzziness widely exist in many data and knowledge intensive applications. With the increasing amount of metadata available, efficient and scalable management of massive semantic data with uncertainty is of crucial importance. This book goes to great depth concerning the fast-growing topic of technologies and approaches of modeling and managing fuzzy metadata with Resource Description Framework (RDF) format. Its major topics include representation of fuzzy RDF data, fuzzy RDF graph matching, query of fuzzy RDF data, and persistence of fuzzy RDF data in diverse databases. The objective of the book is to provide the state-of-the-art information to researchers, practitioners, and postgraduates students who work on the area of big data intelligence and at the same time serve as the uncertain data and knowledge engineering professional as a valuable real-world reference.
This book presents an exhaustive and timely review of key research work on fuzzy XML data management, and provides readers with a comprehensive resource on the state-of-the art tools and theories in this fast growing area. Topics covered in the book include: representation of fuzzy XML, query of fuzzy XML, fuzzy database models, extraction of fuzzy XML from fuzzy database models, reengineering of fuzzy XML into fuzzy database models, and reasoning of fuzzy XML. The book is intended as a reference guide for researchers, practitioners and graduate students working and/or studying in the field of Web Intelligence, as well as for data and knowledge engineering professionals seeking new approaches to replace traditional methods, which may be unnecessarily complex or even unproductive.
Collecting the latest results from leading researchers in the field, this volume provides a single source on major aspects of fuzzy object-oriented database modeling--conceptual, logical, and physical--as well as details of implementations and applications.
Fuzzy Database Modeling with XML aims to provide a single record of current research and practical applications in the fuzzy databases. This volume is the outgrowth of research the author has conducted in recent years. Fuzzy Database Modeling with XML introduces state-of-the-art information to the database research, while at the same time serving the information technology professional faced with a non-traditional application that defeats conventional approaches. The research on fuzzy conceptual models and fuzzy object-oriented databases is receiving increasing attention, in addition to fuzzy relational database models. With rapid advances in network and internet techniques as well, the databases have been applied under the environment of distributed information systems. It is essential in this case to integrate multiple fuzzy database systems. Since databases are commonly employed to store and manipulate XML data, additional requirements are necessary to model fuzzy information with XML. Secondly, this book maps fuzzy XML model to the fuzzy databases. Very few efforts at investigating these issues have thus far occurred. Fuzzy Database Modeling with XML is designed for a professional audience of researchers and practitioners in industry. This book is also suitable for graduate-level students in computer science.
This book offers in-depth insights into the rapidly growing topic of technologies and approaches to modeling fuzzy spatiotemporal data with XML. The topics covered include representation of fuzzy spatiotemporal XML data, topological relationship determination for fuzzy spatiotemporal XML data, mapping between the fuzzy spatiotemporal relational database model and fuzzy spatiotemporal XML data model, and consistencies in fuzzy spatiotemporal XML data updating. Offering a comprehensive guide to the latest research on fuzzy spatiotemporal XML data management, the book is intended to provide state-of-the-art information for researchers, practitioners, and graduate students of Web intelligence, as well as data and knowledge engineering professionals confronted with non-traditional applications that make the use of conventional approaches difficult or impossible.
A fully comprehensive examination of state-of-the-art technologies for measurement at the small scale • Highlights the advanced research work from industry and academia in micro-nano devices test technology • Written at both introductory and advanced levels, provides the fundamentals and theories • Focuses on the measurement techniques for characterizing MEMS/NEMS devices
This book systemically presents the latest research findings in fuzzy RDF data modeling and management. Fuzziness widely exist in many data and knowledge intensive applications. With the increasing amount of metadata available, efficient and scalable management of massive semantic data with uncertainty is of crucial importance. This book goes to great depth concerning the fast-growing topic of technologies and approaches of modeling and managing fuzzy metadata with Resource Description Framework (RDF) format. Its major topics include representation of fuzzy RDF data, fuzzy RDF graph matching, query of fuzzy RDF data, and persistence of fuzzy RDF data in diverse databases. The objective of the book is to provide the state-of-the-art information to researchers, practitioners, and postgraduates students who work on the area of big data intelligence and at the same time serve as the uncertain data and knowledge engineering professional as a valuable real-world reference.
As consumer costs for multimedia devices such as digital cameras and Web phones have decreased and diversity in the market has skyrocketed, the amount of digital information has grown considerably. Intelligent Multimedia Databases and Information Retrieval: Advancing Applications and Technologies details the latest information retrieval technologies and applications, the research surrounding the field, and the methodologies and design related to multimedia databases. Together with academic researchers and developers from both information retrieval and artificial intelligence fields, this book details issues and semantics of data retrieval with contributions from around the globe. As the information and data from multimedia databases continues to expand, the research and documentation surrounding it should keep pace as best as possible, and this book provides an excellent resource for the latest developments.
This book goes to great depth concerning the fast growing topic of technologies and approaches of fuzzy logic in the Semantic Web. The topics of this book include fuzzy description logics and fuzzy ontologies, queries of fuzzy description logics and fuzzy ontology knowledge bases, extraction of fuzzy description logics and ontologies from fuzzy data models, storage of fuzzy ontology knowledge bases in fuzzy databases, fuzzy Semantic Web ontology mapping, and fuzzy rules and their interchange in the Semantic Web. The book aims to provide a single record of current research in the fuzzy knowledge representation and reasoning for the Semantic Web. The objective of the book is to provide the state of the art information to researchers, practitioners and graduate students of the Web intelligence and at the same time serve the knowledge and data engineering professional faced with non-traditional applications that make the application of conventional approaches difficult or impossible.
Computer-based information technologies have been extensively used to help industries manage their processes and information systems hereby - come their nervous center. More specially, databases are designed to s- port the data storage, processing, and retrieval activities related to data management in information systems. Database management systems p- vide efficient task support and database systems are the key to impleme- ing industrial data management. Industrial data management requires da- base technique support. Industrial applications, however, are typically data and knowledge intensive applications and have some unique character- tics that makes their management difficult. Besides, some new techniques such as Web, artificial intelligence, and etc. have been introduced into - dustrial applications. These unique characteristics and usage of new te- nologies have put many potential requirements on industrial data mana- ment, which challenge today’s database systems and promote their evolvement. Viewed from database technology, information modeling in databases can be identified at two levels: (conceptual) data modeling and (logical) database modeling. This results in conceptual (semantic) data model and logical database model. Generally a conceptual data model is designed and then the designed conceptual data model will be transformed into a chosen logical database schema. Database systems based on logical database model are used to build information systems for data mana- ment. Much attention has been directed at conceptual data modeling of - dustrial information systems. Product data models, for example, can be views as a class of semantic data models (i. e.
This book integrates data management in databases with intelligent data processing and analysis in artificial intelligence. It challenges today's database technology and promotes its evolution"--Provided by publisher.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.