This new book on the fracture mechanics of concrete focuses on the latest developments in computational theories, and how to apply those theories to solve real engineering problems. Zihai Shi uses his extensive research experience to present detailed examination of multiple-crack analysis and mixed-mode fracture.Compared with other mature engineering disciplines, fracture mechanics of concrete is still a developing field with extensive new research and development. In recent years many different models and applications have been proposed for crack analysis; the author assesses these in turn, identifying their limitations and offering a detailed treatment of those which have been proved to be robust by comprehensive use. After introducing stress singularity in numerical modelling and some basic modelling techniques, the Extended Fictitious Crack Model (EFCM) for multiple-crack analysis is explained with numerical application examples. This theoretical model is then applied to study two important issues in fracture mechanics - crack interaction and localization, and fracture modes and maximum loads. The EFCM is then reformulated to include the shear transfer mechanism on crack surfaces and the method is used to study experimental problems. With a carefully balanced mixture of theory, experiment and application, Crack Analysis in Structural Concrete is an important contribution to this fast-developing field of structural analysis in concrete. - Latest theoretical models analysed and tested - Detailed assessment of multiple crack analysis and multi-mode fractures - Applications designed for solving real-life engineering problems
Structural Resilience in Sewer Reconstruction: From Theory to Practice provides engineers with a balanced mixture of theory and practice. Divided into three parts, structural resilience is introduced, along with different methods and theories that are needed to assess sewerage networks. The authors begin with a general overview of resilience and lessons learned, then present a comprehensive review of resilience theories in key fields of study. The book also introduces major analysis techniques and computational methods for resilience assessment, also highlighting sewer reconstruction projects carried out in Tokyo, including the reconstruction and development process for construction methods, renovation materials and technical inventions. The structural resilience considerations incorporated in various stages of development are discussed in detail. Computational examples for assessing structural resilience in the renovated sewer system in Tokyo are also shown, with final chapters summarizing structural resilience theories and areas for future study. - Provides a comprehensive review of resilience theories and practices in key fields of study - Presents a detailed study of the structural resilience approach to sewer reconstruction in Tokyo, also including case studies of overseas projects - Includes a systematic presentation of structural resilience theories - Covers rich case studies on various issues in sewerage systems for qualitative and quantitative resilience evaluation
This new book on the fracture mechanics of concrete focuses on the latest developments in computational theories, and how to apply those theories to solve real engineering problems. Zihai Shi uses his extensive research experience to present detailed examination of multiple-crack analysis and mixed-mode fracture.Compared with other mature engineering disciplines, fracture mechanics of concrete is still a developing field with extensive new research and development. In recent years many different models and applications have been proposed for crack analysis; the author assesses these in turn, identifying their limitations and offering a detailed treatment of those which have been proved to be robust by comprehensive use. After introducing stress singularity in numerical modelling and some basic modelling techniques, the Extended Fictitious Crack Model (EFCM) for multiple-crack analysis is explained with numerical application examples. This theoretical model is then applied to study two important issues in fracture mechanics - crack interaction and localization, and fracture modes and maximum loads. The EFCM is then reformulated to include the shear transfer mechanism on crack surfaces and the method is used to study experimental problems. With a carefully balanced mixture of theory, experiment and application, Crack Analysis in Structural Concrete is an important contribution to this fast-developing field of structural analysis in concrete. - Latest theoretical models analysed and tested - Detailed assessment of multiple crack analysis and multi-mode fractures - Applications designed for solving real-life engineering problems
Structural Resilience in Sewer Reconstruction: From Theory to Practice provides engineers with a balanced mixture of theory and practice. Divided into three parts, structural resilience is introduced, along with different methods and theories that are needed to assess sewerage networks. The authors begin with a general overview of resilience and lessons learned, then present a comprehensive review of resilience theories in key fields of study. The book also introduces major analysis techniques and computational methods for resilience assessment, also highlighting sewer reconstruction projects carried out in Tokyo, including the reconstruction and development process for construction methods, renovation materials and technical inventions. The structural resilience considerations incorporated in various stages of development are discussed in detail. Computational examples for assessing structural resilience in the renovated sewer system in Tokyo are also shown, with final chapters summarizing structural resilience theories and areas for future study. - Provides a comprehensive review of resilience theories and practices in key fields of study - Presents a detailed study of the structural resilience approach to sewer reconstruction in Tokyo, also including case studies of overseas projects - Includes a systematic presentation of structural resilience theories - Covers rich case studies on various issues in sewerage systems for qualitative and quantitative resilience evaluation
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.