Spacecraft Attitude Control: A Linear Matrix Inequality Approach solves problemsfor spacecraft attitude control systems using convex optimization and, specifi cally,through a linear matrix inequality (LMI) approach. High-precision pointing and improvedrobustness in the face of external disturbances and other uncertainties are requirementsfor the current generation of spacecraft. This book presents an LMI approach to spacecraftattitude control and shows that all uncertainties in the maneuvering process can besolved numerically. It explains how a model-like state space can be developed through amathematical presentation of attitude control systems, allowing the controller in question tobe applied universally. The authors describe a wide variety of novel and robust controllers,applicable both to spacecraft attitude control and easily extendable to second-ordersystems. Spacecraft Attitude Control provides its readers with an accessible introductionto spacecraft attitude control and robust systems, giving an extensive survey of currentresearch and helping researchers improve robust control performance. - Considers the control requirements of modern spacecraft - Presents rigid and flexible spacecraft control systems with inherent uncertainties mathematically, leading to a model-like state space - Develops a variety of novel and robust controllers directly applicable to spacecraft control as well as extendable to other second-order systems - Includes a systematic survey of recent research in spacecraft attitude control
This book showcases the application of carbon nanotubes as nanodelivery systems for copper atoms, using molecular dynamics simulations as a means of investigation. The nanodelivery system of the carbon nanotube presents the possible usage of the carbon structure in many areas in the future. This book is comprehensive and informative, and serves as a guide for any reader who wishes to perform a molecular dynamics simulation of his own and to conduct an analytical study of a molecular system.
This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks. Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material. However, copper wire bonding has several process and reliability concerns due to its material properties. Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation. In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed. The book also discusses best practices and recommendations on the bond process, bond–pad metallurgies, and appropriate reliability tests for copper wire-bonded electronic components. In summary, this book: Introduces copper wire bonding technologies Presents copper wire bonding processes Discusses copper wire bonding metallurgies Covers recent advancements in copper wire bonding including the bonding process, equipment changes, bond–pad materials and surface finishes Covers the reliability tests and concerns Covers the current implementation of copper wire bonding in the electronics industry Features 120 figures and tables Copper Wire Bonding is an essential reference for industry professionals seeking detailed information on all facets of copper wire bonding technology.
Spacecraft Attitude Control: A Linear Matrix Inequality Approach solves problemsfor spacecraft attitude control systems using convex optimization and, specifi cally,through a linear matrix inequality (LMI) approach. High-precision pointing and improvedrobustness in the face of external disturbances and other uncertainties are requirementsfor the current generation of spacecraft. This book presents an LMI approach to spacecraftattitude control and shows that all uncertainties in the maneuvering process can besolved numerically. It explains how a model-like state space can be developed through amathematical presentation of attitude control systems, allowing the controller in question tobe applied universally. The authors describe a wide variety of novel and robust controllers,applicable both to spacecraft attitude control and easily extendable to second-ordersystems. Spacecraft Attitude Control provides its readers with an accessible introductionto spacecraft attitude control and robust systems, giving an extensive survey of currentresearch and helping researchers improve robust control performance. - Considers the control requirements of modern spacecraft - Presents rigid and flexible spacecraft control systems with inherent uncertainties mathematically, leading to a model-like state space - Develops a variety of novel and robust controllers directly applicable to spacecraft control as well as extendable to other second-order systems - Includes a systematic survey of recent research in spacecraft attitude control
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.