This book offers a fundamental and practical introduction to the use of computational methods. A thorough discussion of practical aspects of the subject is presented in a consistent manner, and the level of treatment is rigorous without being unnecessarily abstract. Each chapter ends with bibliographic information and exercises.
Introduce every concept in the simplest setting and to maintain a level of treatment that is as rigorous as possible without being unnecessarily abstract. Contains unique recent developments of various finite elements such as nonconforming, mixed, discontinuous, characteristic, and adaptive finite elements, along with their applications. Describes unique recent applications of finite element methods to important fields such as multiphase flows in porous media and semiconductor modelling. Treats the three major types of partial differential equations, i.e., elliptic, parabolic, and hyperbolic equations.
This book covers and expands upon material presented by the author at a CBMS-NSF Regional Conference during a ten-lecture series on multiphase flows in porous media and their simulation. It begins with an overview of classical reservoir engineering and basic reservoir simulation methods and then progresses through a discussion of types of flows—single-phase, two-phase, black oil (three-phase), single phase with multicomponents, compositional, and thermal. The author provides a thorough glossary of petroleum engineering terms and their units, along with basic flow and transport equations and their unusual features, and corresponding rock and fluid properties. The practical aspects of reservoir simulation, such as data gathering and analysis, selection of a simulation model, history matching, and reservoir performance prediction, are summarized. Audience This book can be used as a text for advanced undergraduate and first-year graduate students in geology, petroleum engineering, and applied mathematics; as a reference book for geologists, petroleum engineers, and applied mathematicians; or as a handbook for practitioners in the oil industry. Prerequisites are calculus, basic physics, and some knowledge of partial differential equations and matrix algebra.Contents List of Figures; List of Tables; List of Notation; Preface; Introduction; Chapter 1: A Glossary of Petroleum Terms; Chapter 2: Single-Phase Flow and Numerical Solution; Chapter 3: Well Modeling; Chapter 4: Two-Phase Flow and Numerical Solution; Chapter 5: The Black Oil Model and Numerical Solution; Chapter 6: Transport of Multicomponents in a Fluid and Numerical Solution; Chapter 7: Compositional Flow and Numerical Solution; Chapter 8: Nonisothermal Flow and Numerical Solution; Chapter 9: Practical Topics in Reservoir Simulation; Bibliography; Index.
This Finite Element Method offers a fundamental and practical introduction to the finite element method, its variants, and their applications in engineering. Every concept is introduced in the simplest possible setting, while maintaining a level of treatment that is as rigorous as possible without being unnecessarily abstract. Various finite elements in one, two, and three space dimensions are introduced, and their applications to elliptic, parabolic, hyperbolic, and nonlinear equations and to solid mechanics, fluid mechanics, and porous media flow problems are addressed. The variants include the control volume, multipoint flux approximation, nonconforming, mixed, discontinuous, characteristic, adaptive, and multiscale finite element methods. Illustrative computer programs in Fortran and C++ are described. An extensive set of exercises are provided in each chapter. This book serves as a text a for one-semester course for upper-level undergraduates and beginning graduate students and as a professional reference for engineers, mathematicians, and scientists.
Proceedings of an AMS-IMS-SIAM Joint Summer Research Conference on Fluid Flow and Transport in Porous Media, Mathematical and Numerical Treatment, June 17-21, 2001, Mount Holyoke College, South Hadley, Massachusetts
Proceedings of an AMS-IMS-SIAM Joint Summer Research Conference on Fluid Flow and Transport in Porous Media, Mathematical and Numerical Treatment, June 17-21, 2001, Mount Holyoke College, South Hadley, Massachusetts
The June 2001 conference brought together mathematicians, computational scientists, and engineers working on the mathematical and numerical treatment of fluid flow and transport in porous media. This collection of 43 papers from that conference reports on recent advances in network flow modeling, parallel computation, optimization, upscaling, uncertainty reduction, media characterization, and chemically reactive phenomena. Topics include modeling horizontal wells using hybrid grids in reservoir simulation, a high order Lagrangian scheme for flow through unsaturated porous media, and a streamline front tracking method for two- and three- phase flow. No index. Annotation copyrighted by Book News, Inc., Portland, OR.
This book covers and expands upon material presented by the author at a CBMS-NSF Regional Conference during a ten-lecture series on multiphase flows in porous media and their simulation. It begins with an overview of classical reservoir engineering and basic reservoir simulation methods and then progresses through a discussion of types of flows—single-phase, two-phase, black oil (three-phase), single phase with multicomponents, compositional, and thermal. The author provides a thorough glossary of petroleum engineering terms and their units, along with basic flow and transport equations and their unusual features, and corresponding rock and fluid properties. The practical aspects of reservoir simulation, such as data gathering and analysis, selection of a simulation model, history matching, and reservoir performance prediction, are summarized. Audience This book can be used as a text for advanced undergraduate and first-year graduate students in geology, petroleum engineering, and applied mathematics; as a reference book for geologists, petroleum engineers, and applied mathematicians; or as a handbook for practitioners in the oil industry. Prerequisites are calculus, basic physics, and some knowledge of partial differential equations and matrix algebra.Contents List of Figures; List of Tables; List of Notation; Preface; Introduction; Chapter 1: A Glossary of Petroleum Terms; Chapter 2: Single-Phase Flow and Numerical Solution; Chapter 3: Well Modeling; Chapter 4: Two-Phase Flow and Numerical Solution; Chapter 5: The Black Oil Model and Numerical Solution; Chapter 6: Transport of Multicomponents in a Fluid and Numerical Solution; Chapter 7: Compositional Flow and Numerical Solution; Chapter 8: Nonisothermal Flow and Numerical Solution; Chapter 9: Practical Topics in Reservoir Simulation; Bibliography; Index.
This book offers a fundamental and practical introduction to the use of computational methods. A thorough discussion of practical aspects of the subject is presented in a consistent manner, and the level of treatment is rigorous without being unnecessarily abstract. Each chapter ends with bibliographic information and exercises.
Introduce every concept in the simplest setting and to maintain a level of treatment that is as rigorous as possible without being unnecessarily abstract. Contains unique recent developments of various finite elements such as nonconforming, mixed, discontinuous, characteristic, and adaptive finite elements, along with their applications. Describes unique recent applications of finite element methods to important fields such as multiphase flows in porous media and semiconductor modelling. Treats the three major types of partial differential equations, i.e., elliptic, parabolic, and hyperbolic equations.
Well Production Performance Analysis for Shale Gas Reservoirs, Volume 66 presents tactics and discussions that are urgently needed by the petroleum community regarding unconventional oil and gas resources development and production. The book breaks down the mechanics of shale gas reservoirs and the use of mathematical models to analyze their performance. - Features an in-depth analysis of shale gas horizontal fractured wells and how they differ from their conventional counterparts - Includes detailed information on the testing of fractured horizontal wells before and after fracturing - Offers in-depth analysis of numerical simulation and the importance of this tool for the development of shale gas reservoirs
This Finite Element Method offers a fundamental and practical introduction to the finite element method, its variants, and their applications in engineering. Every concept is introduced in the simplest possible setting, while maintaining a level of treatment that is as rigorous as possible without being unnecessarily abstract. Various finite elements in one, two, and three space dimensions are introduced, and their applications to elliptic, parabolic, hyperbolic, and nonlinear equations and to solid mechanics, fluid mechanics, and porous media flow problems are addressed. The variants include the control volume, multipoint flux approximation, nonconforming, mixed, discontinuous, characteristic, adaptive, and multiscale finite element methods. Illustrative computer programs in Fortran and C++ are described. An extensive set of exercises are provided in each chapter. This book serves as a text a for one-semester course for upper-level undergraduates and beginning graduate students and as a professional reference for engineers, mathematicians, and scientists.
Proceedings of an AMS-IMS-SIAM Joint Summer Research Conference on Fluid Flow and Transport in Porous Media, Mathematical and Numerical Treatment, June 17-21, 2001, Mount Holyoke College, South Hadley, Massachusetts
Proceedings of an AMS-IMS-SIAM Joint Summer Research Conference on Fluid Flow and Transport in Porous Media, Mathematical and Numerical Treatment, June 17-21, 2001, Mount Holyoke College, South Hadley, Massachusetts
The June 2001 conference brought together mathematicians, computational scientists, and engineers working on the mathematical and numerical treatment of fluid flow and transport in porous media. This collection of 43 papers from that conference reports on recent advances in network flow modeling, parallel computation, optimization, upscaling, uncertainty reduction, media characterization, and chemically reactive phenomena. Topics include modeling horizontal wells using hybrid grids in reservoir simulation, a high order Lagrangian scheme for flow through unsaturated porous media, and a streamline front tracking method for two- and three- phase flow. No index. Annotation copyrighted by Book News, Inc., Portland, OR.
This volume contains 36 research papers written by prominent researchers. The papers are based on a large satellite conference on scientific computing held at the International Congress of Mathematics (ICM) in Xi'an, China. Topics covered include a variety of subjects in modern scientific computing and its applications, such as numerical discretization methods, linear solvers, parallel computing, high performance computing, and applications to solid and fluid mechanics, energy, environment, and semiconductors. The book will serve as an excellent reference work for graduate students and researchers working with scientific computing for problems in science and engineering.
The need to predict, understand, and optimize complex physical and c- mical processes occurring in and around the earth, such as groundwater c- tamination, oil reservoir production, discovering new oil reserves, and ocean hydrodynamics, has been increasingly recognized. Despite their seemingly disparate natures, these geoscience problems have many common mathe- tical and computational characteristics. The techniques used to describe and study them are applicable across a broad range of areas. The study of the above problems through physical experiments, mat- matical theory, and computational techniques requires interdisciplinary col- boration between engineers, mathematicians, computational scientists, and other researchers working in industry, government laboratories, and univ- sities. By bringing together such researchers, meaningful progress can be made in predicting, understanding, and optimizing physical and chemical processes. The International Workshop on Fluid Flow and Transport in Porous - dia was successfully held in Beijing, China, August 2{6, 1999. The aim of this workshop was to bring together applied mathematicians, computational scientists, and engineers working actively in the mathematical and nume- cal treatment of ?uid ?ow and transport in porous media. A broad range of researchers presented papers and discussed both problems and current, state-of-the-art techniques.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.