ALGEBRAIC NUMBER THEORY provides concisely both the fundamental and profound theory, starting from the succinct ideal theory (Chapters 1-3), turning then to valuation theory and local completion field (Chapters 4-5) which is the base of modern approach. After specific discussions on class numbers, units, quadratic and cyclotomic fields, and analytical theory (Chapters 6-8), the important Class Field Theory (Chapter 9) is expounded, and algebraic function field (Chapter 10) is sketched. This book is based on the study and lectures of the author at several universities.
Due to the increasing security and reliability demand of actual industrial process control systems, the study on fault diagnosis and fault tolerant control of dynamic systems has received considerable attention. Fault accommodation (FA) is one of effective methods that can be used to enhance system stability and reliability, so it has been widely and in-depth investigated and become a hot topic in recent years. Fault detection is used to monitor whether a fault occurs, which is the first step in FA. On the basis of fault detection, fault estimation (FE) is utilized to determine online the magnitude of the fault, which is a very important step because the additional controller is designed using the fault estimate. Compared with fault detection, the design difficulties of FE would increase a lot, so research on FE and accommodation is very challenging. Although there have been advancements reported on FE and accommodation for dynamic systems, the common methods at the present stage have design difficulties, which limit applications of respective design approaches. Therefore, the problems of FE and accommodation are needed to be further studied. This book considers the theory and technology of FE and accommodation for dynamic systems, and establishes a systemic and comprehensive framework of FE and accommodation for continuous/discrete-time systems.
This textbook is designed for an introductory course at undergraduate and graduate levels for bioengineering students. It provides a systematic way of examining bioengineering problems in a multidisciplinary computational approach. The book introduces basic concepts of multidiscipline-based computational modeling methods, provides detailed step-by-step techniques to build a model with consideration of underlying multiphysics, and discusses many important aspects of a modeling approach including results interpretation, validation, and assessment.
Regarding revolution as a spatial practice, this book explores modes of spatial construction in modern China through a panoramic overview of major Chinese revolutionary events and nuanced analysis of cultural representations. Examining the relationship between revolution, space, and culture in modern China the author takes five spatially significant revolutionary events as case studies - the territorial dispute between Russia and the Qing dynasty in 1892, the Land Reform in the 1920s, the Long March (1934-36), the mainland-Taiwan split in 1949, and the Cultural Revolution (1966-76) - and analyses how revolution constructs, conceives, and transforms space. Using materials associated with these events, including primarily literature, as well as maps, political treatises, historiography, plays, film, and art, the book argues that in addition to redirecting the flow of Chinese history, revolutionary movements operate in and on space in three main ways: maintaining territorial sovereignty, redefining social relations, and governing an imaginary realm. Arguing for reconsideration of revolution as a reorganization of space as much as time, this book will appeal to students and scholars of Chinese culture, society, history and literature.
This book systematically studies the stochastic non-cooperative differential game theory of generalized linear Markov jump systems and its application in the field of finance and insurance. The book is an in-depth research book of the continuous time and discrete time linear quadratic stochastic differential game, in order to establish a relatively complete framework of dynamic non-cooperative differential game theory. It uses the method of dynamic programming principle and Riccati equation, and derives it into all kinds of existence conditions and calculating method of the equilibrium strategies of dynamic non-cooperative differential game. Based on the game theory method, this book studies the corresponding robust control problem, especially the existence condition and design method of the optimal robust control strategy. The book discusses the theoretical results and its applications in the risk control, option pricing, and the optimal investment problem in the field of finance and insurance, enriching the achievements of differential game research. This book can be used as a reference book for non-cooperative differential game study, for graduate students majored in economic management, science and engineering of institutions of higher learning.
This book investigates observer-fault estimation techniques in detail, while also highlighting recent research and findings regarding fault estimation. Many practical control systems are subject to possible malfunctions, which may cause significant performance loss or even system instability. To improve the reliability, performance and safety of dynamical systems, fault diagnosis techniques are now receiving considerable attention, both in research and applications, and have been the subject of intensive investigations. Fault detection – the essential first step in fault diagnosis – is a binary decision-making process used to determine whether or not a fault has occurred. In turn, fault isolation is used to identify the location of the faulty component, while fault estimation is used to identify the size of the fault online. Compared with the problems involved in fault detection and isolation, fault estimation is considerably more challenging.
This book presents an overview of the state of the art of the developing topic of nonlinear optics with contributions from leading experts in the field in China, ranging from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. In the past decade, nonlinear optics has evolved into many different branches, depending on the form of the material used for studying the nonlinear phenomena. The growth of research in nonlinear optics is closely linked to the rapid technological advances that have occurred in related fields, such as ultra-fast phenomena and optical communications. Nonlinear-optics activities range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology. This book reviews the development of some nonlinear optics researches in China, not only the discovery of new principles, but also potential applications of nonlinear optics for various industries.
The insertion of communication networks in feedback control loops complicates analysis and synthesis of Cyber-Physical Systems (CPSs), and network-induced uncertainties may degrade system control performances. Thus, this book researches networked delay compensation and event-triggered control approaches for a series of CPSs subject to network-induced uncertainties. The authors begin with an introduction to the concepts and challenges of CPSs, followed by an overview of networked control approaches and event-triggered control strategies in CPSs. Then, networked delay compensation and event-triggered control approaches are proposed for CPSs with network communication delay, data dropout, signal quantization and event-triggered communication. More specifically, networked delay compensation approaches are proposed for linear/nonlinear networked controlled plant with time-varying and random network communication delays and data dropouts. To reduce computational burden and network communication loads in CPSs, event-triggered control, self-triggered control, co-design of event-triggered control and quantized control techniques, and event-triggered disturbance rejection control approaches are also presented. This book is an essential text for researchers and engineers interested in cybersecurity, networked control, and CPS. It would also prove useful for graduate students in the fields of science, engineering, and computer science.
This book focuses on two-time-scale Markov chains in discrete time. Our motivation stems from existing and emerging applications in optimization and control of complex systems in manufacturing, wireless communication, and ?nancial engineering. Much of our e?ort in this book is devoted to designing system models arising from various applications, analyzing them via analytic and probabilistic techniques, and developing feasible compu- tionalschemes. Ourmainconcernistoreducetheinherentsystemcompl- ity. Although each of the applications has its own distinct characteristics, all of them are closely related through the modeling of uncertainty due to jump or switching random processes. Oneofthesalientfeaturesofthisbookistheuseofmulti-timescalesin Markovprocessesandtheirapplications. Intuitively,notallpartsorcom- nents of a large-scale system evolve at the same rate. Some of them change rapidly and others vary slowly. The di?erent rates of variations allow us to reduce complexity via decomposition and aggregation. It would be ideal if we could divide a large system into its smallest irreducible subsystems completely separable from one another and treat each subsystem indep- dently. However, this is often infeasible in reality due to various physical constraints and other considerations. Thus, we have to deal with situations in which the systems are only nearly decomposable in the sense that there are weak links among the irreducible subsystems, which dictate the oc- sional regime changes of the system. An e?ective way to treat such near decomposability is time-scale separation. That is, we set up the systems as if there were two time scales, fast vs. slow. xii Preface Followingthetime-scaleseparation,weusesingularperturbationmeth- ology to treat the underlying systems.
This book is based on the authors’ research on the stabilization and fault-tolerant control of batch processes, which are flourishing topics in the field of control system engineering. It introduces iterative learning control for linear/nonlinear single/multi-phase batch processes; iterative learning optimal guaranteed cost control; delay-dependent iterative learning control; and iterative learning fault-tolerant control for linear/nonlinear single/multi-phase batch processes. Providing important insights and useful methods and practical algorithms that can potentially be applied in batch process control and optimization, it is a valuable resource for researchers, scientists, and engineers in the field of process system engineering and control engineering.
This book presents a study on the novel concept of "event-triggered control of nonlinear systems subject to disturbances", discussing the theory and practical applications. Richly illustrated, it is a valuable resource for researchers, engineers and graduate students in automation engineering who wish to learn the theories, technologies, and applications of event-triggered control of nonlinear systems.
Features a broad introduction to recent research on Turing’s formula and presents modern applications in statistics, probability, information theory, and other areas of modern data science Turing's formula is, perhaps, the only known method for estimating the underlying distributional characteristics beyond the range of observed data without making any parametric or semiparametric assumptions. This book presents a clear introduction to Turing’s formula and its connections to statistics. Topics with relevance to a variety of different fields of study are included such as information theory; statistics; probability; computer science inclusive of artificial intelligence and machine learning; big data; biology; ecology; and genetics. The author provides examinations of many core statistical issues within modern data science from Turing's perspective. A systematic approach to long-standing problems such as entropy and mutual information estimation, diversity index estimation, domains of attraction on general alphabets, and tail probability estimation is presented in light of the most up-to-date understanding of Turing's formula. Featuring numerous exercises and examples throughout, the author provides a summary of the known properties of Turing's formula and explains how and when it works well; discusses the approach derived from Turing's formula in order to estimate a variety of quantities, all of which mainly come from information theory, but are also important for machine learning and for ecological applications; and uses Turing's formula to estimate certain heavy-tailed distributions. In summary, this book: • Features a unified and broad presentation of Turing’s formula, including its connections to statistics, probability, information theory, and other areas of modern data science • Provides a presentation on the statistical estimation of information theoretic quantities • Demonstrates the estimation problems of several statistical functions from Turing's perspective such as Simpson's indices, Shannon's entropy, general diversity indices, mutual information, and Kullback–Leibler divergence • Includes numerous exercises and examples throughout with a fundamental perspective on the key results of Turing’s formula Statistical Implications of Turing's Formula is an ideal reference for researchers and practitioners who need a review of the many critical statistical issues of modern data science. This book is also an appropriate learning resource for biologists, ecologists, and geneticists who are involved with the concept of diversity and its estimation and can be used as a textbook for graduate courses in mathematics, probability, statistics, computer science, artificial intelligence, machine learning, big data, and information theory. Zhiyi Zhang, PhD, is Professor of Mathematics and Statistics at The University of North Carolina at Charlotte. He is an active consultant in both industry and government on a wide range of statistical issues, and his current research interests include Turing's formula and its statistical implications; probability and statistics on countable alphabets; nonparametric estimation of entropy and mutual information; tail probability and biodiversity indices; and applications involving extracting statistical information from low-frequency data space. He earned his PhD in Statistics from Rutgers University.
This book gives a systematic treatment of singularly perturbed systems that naturally arise in control and optimization, queueing networks, manufacturing systems, and financial engineering. It presents results on asymptotic expansions of solutions of Komogorov forward and backward equations, properties of functional occupation measures, exponential upper bounds, and functional limit results for Markov chains with weak and strong interactions. To bridge the gap between theory and applications, a large portion of the book is devoted to applications in controlled dynamic systems, production planning, and numerical methods for controlled Markovian systems with large-scale and complex structures in the real-world problems. This second edition has been updated throughout and includes two new chapters on asymptotic expansions of solutions for backward equations and hybrid LQG problems. The chapters on analytic and probabilistic properties of two-time-scale Markov chains have been almost completely rewritten and the notation has been streamlined and simplified. This book is written for applied mathematicians, engineers, operations researchers, and applied scientists. Selected material from the book can also be used for a one semester advanced graduate-level course in applied probability and stochastic processes.
Engineering students in a wide variety of engineering disciplines from mechanical and chemical to biomedical and materials engineering must master the principles of transport phenomena as an essential tool in analyzing and designing any system or systems wherein momentum, heat and mass are transferred. This textbook was developed to address that need, with a clear presentation of the fundamentals, ample problem sets to reinforce that knowledge, and tangible examples of how this knowledge is put to use in engineering design. Professional engineers, too, will find this book invaluable as reference for everything from heat exchanger design to chemical processing system design and more. * Develops an understanding of the thermal and physical behavior of multiphase systems with phase change, including microscale and porosity, for practical applications in heat transfer, bioengineering, materials science, nuclear engineering, environmental engineering, process engineering, biotechnology and nanotechnology * Brings all three forms of phase change, i.e., liquid vapor, solid liquid and solid vapor, into one volume and describes them from one perspective in the context of fundamental treatment * Presents the generalized integral and differential transport phenomena equations for multi-component multiphase systems in local instance as well as averaging formulations. The molecular approach is also discussed with the connection between microscopic and molecular approaches * Presents basic principles of analyzing transport phenomena in multiphase systems with emphasis on melting, solidification, sublimation, vapor deposition, condensation, evaporation, boiling and two-phase flow heat transfer at the micro and macro levels * Solid/liquid/vapor interfacial phenomena, including the concepts of surface tension, wetting phenomena, disjoining pressure, contact angle, thin films and capillary phenomena, including interfacial balances for mass, species, momentum, and energy for multi-component and multiphase interfaces are discussed * Ample examples and end-of-chapter problems, with Solutions Manual and PowerPoint presentation available to the instructors
This book discusses systematically the many variations of vacation policy. The book discusses a variety of typical vacation model applications. The presentation style is unique compared with the books published in the same field – a "theorem and proof" format is used. Also, this is the first time G1/M/1 multi-server vacation models, both continuous and discrete, and the optimization and control issues have been presented in book form.
The Ben cao gang mu, compiled in the second half of the sixteenth century by a team led by the physician Li Shizhen (1518Ð1593) on the basis of previously published books and contemporary knowledge, is the largest encyclopedia of natural history in a long tradition of Chinese materia medica works. Its description of almost 1,900 pharmaceutically used natural and man-made substances marks the apex of the development of premodern Chinese pharmaceutical knowledge. The Ben cao gang mu dictionary offers access to this impressive work of 1,600,000 characters. This first book in a three-volume series analyzes the meaning of 4,500 historical illness terms.
This book investigates the modeling and optimization issues in mobile social networks (MSNs). Firstly, the architecture and applications of MSNs are examined. The existing works on MSNs are reviewed by specifying the critical challenges and research issues. Then, with the introduction of MSN-based social graph and information dissemination mechanisms, the analytical model for epidemic information dissemination with opportunistic Links in MSNs is discussed. In addition, optimal resource allocation is studied based on a heterogeneous architecture, which provides mobile social services with high capacity and low latency. Finally, this book summarize some open problems and future research directions in MSNs. Written for researchers and academics, this book is useful for anyone working on mobile networks, network architecture, or content delivery. It is also valuable for advanced-level students of computer science.
This monograph introduces the authors’ work on model predictive control system design using extended state space and extended non-minimal state space approaches. It systematically describes model predictive control design for chemical processes, including the basic control algorithms, the extension to predictive functional control, constrained control, closed-loop system analysis, model predictive control optimization-based PID control, genetic algorithm optimization-based model predictive control, and industrial applications. Providing important insights, useful methods and practical algorithms that can be used in chemical process control and optimization, it offers a valuable resource for researchers, scientists and engineers in the field of process system engineering and control engineering.
The theoretical basis of membrane computing was established in the early 2000s with fundamental research into the computational power, complexity aspects and relationships with other (un)conventional computing paradigms. Although this core theoretical research has continued to grow rapidly and vigorously, another area of investigation has since been added, focusing on the applications of this model in many areas, most prominently in systems and synthetic biology, engineering optimization, power system fault diagnosis and mobile robot controller design. The further development of these applications and their broad adoption by other researchers, as well as the expansion of the membrane computing modelling paradigm to other applications, call for a set of robust, efficient, reliable and easy-to-use tools supporting the most significant membrane computing models. This work provides comprehensive descriptions of such tools, making it a valuable resource for anyone interested in membrane computing models.
Nonlinear evolution equations are widely used to describe nonlinear phenomena in natural and social sciences. However, they are usually quite difficult to solve in most instances. This book introduces the finite difference methods for solving nonlinear evolution equations. The main numerical analysis tool is the energy method. This book covers the difference methods for the initial-boundary value problems of twelve nonlinear partial differential equations. They are Fisher equation, Burgers' equation, regularized long-wave equation, Korteweg-de Vries equation, Camassa-Holm equation, Schrödinger equation, Kuramoto-Tsuzuki equation, Zakharov equation, Ginzburg-Landau equation, Cahn-Hilliard equation, epitaxial growth model and phase field crystal model. This book is a monograph for the graduate students and science researchers majoring in computational mathematics and applied mathematics. It will be also useful to all researchers in related disciplines.
This is the first systematic and extensive book on exotic options. The book covers essentially all popular exotic options currently trading in the Over-the-Counter (OTC) market, from digitals, quantos, spread options, lookback options, Asian options, vanilla barrier options, to various types of exotic barrier options and other options. Each type of exotic options is largely written in a separate chapter, beginning with the basic concepts of the products and then moving on to how to price them in closed-form solutions. Many pricing formulae and analyses which have not previously appeared in the literature are included and illustrated with detailed examples. It will be of great interest to traders, marketers, analysts, risk managers, professors, graduate students, and anyone who is interested in what is going on in the rapidly changing financial market.
The H∞ control has been one of the important robust control approaches since the 1980s. This book extends the area to nonlinear stochastic H2/H∞ control, and studies more complex and practically useful mixed H2/H∞ controller synthesis rather than the pure H∞ control. Different from the commonly used convex optimization method, this book applies the Nash game approach to give necessary and sufficient conditions for the existence and uniqueness of the mixed H2/H∞ control. Researchers will benefit from our detailed exposition of the stochastic mixed H2/H∞ control theory, while practitioners can apply our efficient algorithms to address their practical problems.
This book investigates distributed cooperative control and communication of MASs including linear systems, nonlinear systems and multiple rigid body systems. The model-based and data-driven control method are employed to design the (optimal) cooperative control protocol. The approaches of this book consist of model-based and data-driven control such as predictive control, event-triggered control, optimal control, adaptive dynamic programming, etc. From this book, readers can learn about distributed cooperative control methods, data-driven control, finite-time stability analysis, cooperative attitude control of multiple rigid bodies. Some fundamental knowledge prepared to read this book is finite-time stability theory, event-triggered sampling mechanism, adaptive dynamic programming and optimal control.
Group cohomology has a rich history that goes back a century or more. Its origins are rooted in investigations of group theory and num ber theory, and it grew into an integral component of algebraic topology. In the last thirty years, group cohomology has developed a powerful con nection with finite group representations. Unlike the early applications which were primarily concerned with cohomology in low degrees, the in teractions with representation theory involve cohomology rings and the geometry of spectra over these rings. It is this connection to represen tation theory that we take as our primary motivation for this book. The book consists of two separate pieces. Chronologically, the first part was the computer calculations of the mod-2 cohomology rings of the groups whose orders divide 64. The ideas and the programs for the calculations were developed over the last 10 years. Several new features were added over the course of that time. We had originally planned to include only a brief introduction to the calculations. However, we were persuaded to produce a more substantial text that would include in greater detail the concepts that are the subject of the calculations and are the source of some of the motivating conjectures for the com putations. We have gathered together many of the results and ideas that are the focus of the calculations from throughout the mathematical literature.
This book addresses the fundamental theory and key technologies of narrowband and broadband mobile communication systems specifically for railways. It describes novel relaying schemes that meet the different design criteria for railways and discusses the applications of signal classification techniques as well as offline resource scheduling as a way of advancing rail practice. Further, it introduces Novel Long Term Evolution for Railway (LTE-R) network architecture, the Quality of Service (QoS) requirement of LTE-R and its performance evaluation and discusses in detail security technologies for rail-dedicated mobile communication systems. The advanced research findings presented in the book are all based on high-speed railway measurement data, which offer insights into the propagation mechanisms and corresponding modeling theory and approaches in unique railway scenarios.It is a valuable resource for researchers, engineers and graduate students in the fields of rail traffic systems, telecommunication and information systems.
This book focuses on the basic control and filtering synthesis problems for discrete-time switched linear systems under time-dependent switching signals. Chapter 1, as an introduction of the book, gives the backgrounds and motivations of switched systems, the definitions of the typical time-dependent switching signals, the differences and links to other types of systems with hybrid characteristics and a literature review mainly on the control and filtering for the underlying systems. By summarizing the multiple Lyapunov-like functions (MLFs) approach in which different requirements on comparisons of Lyapunov function values at switching instants, a series of methodologies are developed for the issues on stability and stabilization, and l2-gain performance or tube-based robustness for l∞ disturbance, respectively, in Chapters 2 and 3. Chapters 4 and 5 are devoted to the control and filtering problems for the time-dependent switched linear systems with either polytopic uncertainties or measurable time-varying parameters in different sense of disturbances. The asynchronous switching problem, where there is time lag between the switching of the currently activated system mode and the controller/filter to be designed, is investigated in Chapter 6. The systems with various time delays under typical time-dependent switching signals are addressed in Chapter 7.
Lore and Verse is the first English-language book dedicated entirely to studying poems on history (yongshi shi) in premodern China. Focusing on works by poets from the entire range of early medieval China (220–589), Yue Zhang explores how history was disseminated and interpreted through poetry, as well as how and why certain historical figures were commemorated in poetry. In writing poems on history, poets retrospectively crafted their own identities through their celebration of historical figures, and they prospectively fortified a continuous lineage for transmitting their values and reputation to future generations. This continuous tradition of cultural memory informs a poet's reception of historical figures, which in turn shapes that tradition through further intertextual connections. Lore and Verse questions the sweeping generalization of early medieval Chinese poetry as consisting mainly of exuberant images and an ornamental style—an inaccurate characterization repeated by later historians and literary critics—and it provides translations, close readings, and analyses of selected poems on history that will be useful for students, instructors, and general readers interested in premodern Chinese literature and culture.
Two conferences, Logic and Its Applications in Algebra and Geometry and Combinatorial Set Theory, Excellent Classes, and Schanuel Conjecture, were held at the University of Michigan (Ann Arbor). These events brought together model theorists and set theorists working in these areas. This volume is the result of those meetings. It is suitable for graduate students and researchers working in mathematical logic.
An easy-to-understand course book, based on the authentic lectures and detailed research, conducted by the authors themselves, on information optics, holography and MATLAB. This book is the first to highlight the incoherent optical system, provide up-to-date, novel digital holography techniques, and demonstrate MATLAB codes to accomplish tasks such as optical image processing and pattern recognition. This title is a comprehensive introduction to the basics of Fourier optics as well as optical image processing and digital holography. A step-by-step guide which details the vast majority of the derivations, without omitting essential steps, to facilitate a clear mathematical understanding. This book also features exercises at the end of each chapter, providing hands-on experience and consolidating understanding. An ideal companion for graduates and researchers involved in engineering and applied physics, as well as interested in the growing field of information optics.
Vehicular Platoon System Design: Fundamentals and Robustness provides a comprehensive introduction to connected and automated vehicular platoon system design. Platoons decrease the distances between cars or trucks using electronic, and possibly mechanical, coupling. This capability allows many cars or trucks to accelerate or brake simultaneously. It also allows for a closer headway between vehicles by eliminating reacting distance needed for human reaction. The book considers the key issues of robustness and cybersecurity, with optimization-based model predictive control schemes applied to control vehicle platoon.In the controller design part, several practical problems, such as constraint handling, optimal control performance, robustness against disturbance, and resilience against cyberattacks are reviewed. In addition, the book provides detailed theoretical analysis of the stability of the platoon under different control schemes. - Provides a comprehensive introduction to the state-of-the-art development of connected and automated vehicular platoon systems - Covers the advanced, robust and stochastic model predictive control algorithm design methods for constraint handling and robustness improvement - Introduces rigorous theoretical stability analysis from the robust tube-based distributedMPC (Model Predictive Control) and stochastic tube-based distributed MPC perspectives - Offers various filter-based inter-vehicle attack detection methods and event-based resilient vehicle platoon control design methods
Incorporates mixed-effects modeling techniques for more powerful and efficient methods This book presents current and effective nonparametric regression techniques for longitudinal data analysis and systematically investigates the incorporation of mixed-effects modeling techniques into various nonparametric regression models. The authors emphasize modeling ideas and inference methodologies, although some theoretical results for the justification of the proposed methods are presented. With its logical structure and organization, beginning with basic principles, the text develops the foundation needed to master advanced principles and applications. Following a brief overview, data examples from biomedical research studies are presented and point to the need for nonparametric regression analysis approaches. Next, the authors review mixed-effects models and nonparametric regression models, which are the two key building blocks of the proposed modeling techniques. The core section of the book consists of four chapters dedicated to the major nonparametric regression methods: local polynomial, regression spline, smoothing spline, and penalized spline. The next two chapters extend these modeling techniques to semiparametric and time varying coefficient models for longitudinal data analysis. The final chapter examines discrete longitudinal data modeling and analysis. Each chapter concludes with a summary that highlights key points and also provides bibliographic notes that point to additional sources for further study. Examples of data analysis from biomedical research are used to illustrate the methodologies contained throughout the book. Technical proofs are presented in separate appendices. With its focus on solving problems, this is an excellent textbook for upper-level undergraduate and graduate courses in longitudinal data analysis. It is also recommended as a reference for biostatisticians and other theoretical and applied research statisticians with an interest in longitudinal data analysis. Not only do readers gain an understanding of the principles of various nonparametric regression methods, but they also gain a practical understanding of how to use the methods to tackle real-world problems.
The book is the first book on complex matrix equations including the conjugate of unknown matrices. The study of these conjugate matrix equations is motivated by the investigations on stabilization and model reference tracking control for discrete-time antilinear systems, which are a particular kind of complex system with structure constraints. It proposes useful approaches to obtain iterative solutions or explicit solutions for several types of complex conjugate matrix equation. It observes that there are some significant differences between the real/complex matrix equations and the complex conjugate matrix equations. For example, the solvability of a real Sylvester matrix equation can be characterized by matrix similarity; however, the solvability of the con-Sylvester matrix equation in complex conjugate form is related to the concept of con-similarity. In addition, the new concept of conjugate product for complex polynomial matrices is also proposed in order to establish a unified approach for solving a type of complex matrix equation.
This book puts forward the concept of a virtual equivalent system (VES) based on theoretical analysis and simulation results. The new concept will facilitate the development of a unified framework for analyzing the stability and convergence of self-tuning control (STC) systems, and potentially, of all adaptive control systems. The book then shows that a time-varying STC system can be converted into a time-invariant system using a certain nonlinear compensation signal, which reduces the complexity and difficulty of stability and convergence analysis. In closing, the VES concept and methodology are used to assess the stability of multiple model adaptive control (MMAC) systems and T-S model-based fuzzy control systems.
Many technological, socio-economic, environmental, biomedical phenomena exhibit an underlying graph structure. Valued graph allows one to incorporate the connections or links among the population units in addition. The links may provide effectively access to the part of population that is the primary target, which is the case for many unconventional sampling methods, such as indirect, network, line-intercept or adaptive cluster sampling. Or, one may be interested in the structure of the connections, in terms of the corresponding graph properties or parameters, such as when various breadth- or depth-first non-exhaustive search algorithms are applied to obtain compressed views of large often dynamic graphs. Graph sampling provides a statistical approach to study real graphs from either of these perspectives. It is based on exploring the variation over all possible sample graphs (or subgraphs) which can be taken from the given population graph, by means of the relevant known sampling probabilities. The resulting design-based inference is valid whatever the unknown properties of the given real graphs. One-of-a-kind treatise of multidisciplinary topics relevant to statistics, mathematics and data science. Probabilistic treatment of breadth-first and depth-first non-exhaustive search algorithms in graphs. Presenting cutting-edge theory and methods based on latest research. Pathfinding for future research on sampling from real graphs. Graph Sampling can primarily be used as a resource for researchers working with sampling or graph problems, and as the basis of an advanced course for post-graduate students in statistics, mathematics and data science.
This book systematically introduces modeling, performance evaluation and applications of Automatic Materiel Handling System (AMHS) in semiconductor manufactucing, and focuses discussion on the coordination of two subsystems. Resources dispatch and optimization are conducted on operational research combined with cases studies. Written in a practical way, it is an essential reference for researchers and engineers in manufacturing and management.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.