This book analyzes the continuous operation of a power plant with condensing power units in combined heat and power mode (CHP-mode) over a period of one year. Focusing on the operation of one and two power-unit systems with differing heat exchanger configurations, this book uses mathematical modeling of the steam-water cycle of a 370 MW power unit to calculate the operating characteristics and mass-energy balance of the system. Featuring comprehensive thermodynamic analysis of the quasi-unsteady operation of power units in cogeneration for electrical power generation, as determined by the Polish Power System, this work also includes an economic analysis of the power plant, presenting the costs and economic effectiveness of such a system.
Conversion of Coal-Fired Power Plant to Cogeneration and Combined-Cycle presents the methodology, calculation procedures and tools used to support enterprise planning for adapting power stations to cogeneration and combined-cycle forms. The authors analyze the optimum selection of the structure of heat exchangers in a 370 MW power block, the structure of heat recovery steam generators and gas turbines. Conversion of Coal-Fired Power Plant to Cogeneration and Combined-Cycle also addresses the problems of converting existing power plants to dual-fuel gas-steam combined-cycle technologies coupled with parallel systems. Conversion of Coal-Fired Power Plant to Cogeneration and Combined-Cycle is an informative monograph written for researchers, postgraduate students and policy makers in power engineering.
This book provides a methodology for developing an optimum investment strategy in the heating and combined heat and power (CHP) industry. It demonstrates how to apply mathematical models to the analysis of heat and electricity source operation from technical and economic perspectives. It also allows readers to ascertain the economic effectiveness of modernizing an existing CHP plant. The mathematical models presented are designed to recognize identity profits in continuous time so that they can be better predicted. The authors examine the operational costs of a CHP plant and the impact of factors, such as environmental costs, associated with investment in the heating and CHP sector to enable readers to select the most appropriate technologies. It presents a state-of-the-art technical and economic analysis to enhance readers’ understanding of investment in and optimization of heating and CHP, and provides practical guidance for investors’ decision-making. The book is a valuable source of information, making it ideal for financial analysts and power engineers. Thanks to its in-depth analysis of mathematical methods, it is also suitable for students and researchers with an interest in investment strategy.
This book provides a methodology for developing an optimum investment strategy in the heating and combined heat and power (CHP) industry. It demonstrates how to apply mathematical models to the analysis of heat and electricity source operation from technical and economic perspectives. It also allows readers to ascertain the economic effectiveness of modernizing an existing CHP plant. The mathematical models presented are designed to recognize identity profits in continuous time so that they can be better predicted. The authors examine the operational costs of a CHP plant and the impact of factors, such as environmental costs, associated with investment in the heating and CHP sector to enable readers to select the most appropriate technologies. It presents a state-of-the-art technical and economic analysis to enhance readers’ understanding of investment in and optimization of heating and CHP, and provides practical guidance for investors’ decision-making. The book is a valuable source of information, making it ideal for financial analysts and power engineers. Thanks to its in-depth analysis of mathematical methods, it is also suitable for students and researchers with an interest in investment strategy.
Conversion of Coal-Fired Power Plant to Cogeneration and Combined-Cycle presents the methodology, calculation procedures and tools used to support enterprise planning for adapting power stations to cogeneration and combined-cycle forms. The authors analyze the optimum selection of the structure of heat exchangers in a 370 MW power block, the structure of heat recovery steam generators and gas turbines. Conversion of Coal-Fired Power Plant to Cogeneration and Combined-Cycle also addresses the problems of converting existing power plants to dual-fuel gas-steam combined-cycle technologies coupled with parallel systems. Conversion of Coal-Fired Power Plant to Cogeneration and Combined-Cycle is an informative monograph written for researchers, postgraduate students and policy makers in power engineering.
This book analyzes the continuous operation of a power plant with condensing power units in combined heat and power mode (CHP-mode) over a period of one year. Focusing on the operation of one and two power-unit systems with differing heat exchanger configurations, this book uses mathematical modeling of the steam-water cycle of a 370 MW power unit to calculate the operating characteristics and mass-energy balance of the system. Featuring comprehensive thermodynamic analysis of the quasi-unsteady operation of power units in cogeneration for electrical power generation, as determined by the Polish Power System, this work also includes an economic analysis of the power plant, presenting the costs and economic effectiveness of such a system.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.