Few areas of science are as interdisciplinary as materials science. Chemistry, physics, mechanical engineering, and mathematics each play a part within it. The role of physics is to describe the objects, effects and phenomena at different scales (micro-, meso-, and macroscopic) as precisely as possible. Physics of Materials addresses this description at the elementary level. Based on an undergraduate level course taught at the Ecole Polytechnique, France, the main emphasis is on the conduction related phenomena (electronic properties) and the plastic behavior (ionic properties) of materials, such as metals and alloys, semiconductors, and ceramics. It assumes a basic grounding in statistical physics, quantum mechanics and elasticity but does not require prior knowledge of solid-state physics, to which it will serve as a useful introduction. The presentation of the course is followed by several examination problems, with solutions, which cover various specific applications of the general concepts and which will enable readers to test their understanding of these concepts.
Potential impact aroma compounds of gin have been identified using Gas Chromatogry Olfactometry Mass-Spectrometry (GC-O-MS). In order to select some of them for a recombination study, we developed a specific procedure. Instead of only choosing the compounds on criteria such as their odor quality or their odor activity values, we also used physico-chemical parameters and information on their botanical origin. Data were organized in blocks homogeneous in terms of parameter type. Different statistical treatments were used in order to classify the compounds either by analyzing the parameters altogether or separately block by block.
As an applied science, Enology is a collection of knowledge from the fundamental sciences including chemistry, biochemistry, microbiology, bioengineering, psychophysics, cognitive psychology, etc., and nourished by empirical observations. The approach used in the Handbook of Enology is thus the same. It aims to provide practitioners, winemakers, technicians and enology students with foundational knowledge and the most recent research results. This knowledge can be used to contribute to a better definition of the quality of grapes and wine, a greater understanding of chemical and microbiological parameters, with the aim of ensuring satisfactory fermentations and predicting the evolution of wines, and better mastery of wine stabilization processes. As a result, the purpose of this publication is to guide readers in their thought processes with a view to preserving and optimizing the identity and taste of wine and its aging potential. This third English edition of The Handbook of Enology, is an enhanced translation from the 7th French 2017 edition, and is published as a two-volume set describing aspects of winemaking using a detailed, scientific approach. The authors, who are highly-respected enologists, examine winemaking processes, theorizing what constitutes a perfect technique and the proper combination of components necessary to produce a quality vintage. They also illustrate methodologies of common problems, revealing the mechanism behind the disorder, thus enabling a diagnosis and solution. Volume 2: The Chemistry of Wine and Stabilization and Treatments looks at the wine itself in two parts. Part One analyzes the chemical makeup of wine, including organic acids, alcoholic, volatile and phenolic compounds, carbohydrates, and aromas. Part Two describes the procedures necessary to achieve a perfect wine: the clarification processes of fining, filtering and centrifuging, stabilization, and aging. Coverage includes: Wine chemistry; Organic acids; Alcohols and other volatile products; Carbohydrates; Dry extract and mineral matter; Nitrogen substances; Phenolic compounds; The aroma of grape varieties; The chemical nature, origin and consequences of the main organoleptic defects; Stabilization and treatment of wines; The chemical nature, origin and consequences of the main organoleptic defects; The concept of clarity and colloidal phenomena; Clarification and stabilization treatments; Clarification of wines by filtration and centrifugation; The stabilization of wines by physical processes; The aging of wines in vats and in barrels and aging phenomena. The target audience includes advanced viticulture and enology students, professors and researchers, and practicing grape growers and vintners.
Explaining the science contained in a simple assembly of grains—the most abundant form of matter present on Earth. Granular media—composed of vast amounts of grains, consolidated or not—constitute the most abundant form of solid matter on Earth. Granular materials assemble in disordered configurations scientists often liken to a bag of marbles. Made of macroscopic particles rather than molecules, they defy the standard scheme of classification in terms of solid, liquid, and gas. Granular materials provide a model relevant to various domains of research, including engineering, physics, and biology. William Blake famously wished “To See a World in a Grain of Sand”; in this book, pioneering researchers in granular matter explain the science hidden behind simple grains, shedding light on collective behavior in disordered settings in general. The authors begin by describing the single grain with its different origins, shapes, and sizes, then examine grains in piled or stacked form. They explain the packing fraction of granular media, a crucial issue that bears on the properties displayed in practical applications; explore small-scale deformations in piles of disordered grains, with particular attention to friction; and present theories of various modes of disorder. Along the way, they discuss such concepts as force chains, arching effects, wet grains, sticky contacts, and inertial effects. Drawing on recent numerical simulations as well as classical concepts developed in physics and mechanics, the book offers an accessible introduction to a rapidly developing field.
Few areas of science are as interdisciplinary as materials science. Chemistry, physics, mechanical engineering, and mathematics each play a part within it. The role of physics is to describe the objects, effects and phenomena at different scales (micro-, meso-, and macroscopic) as precisely as possible. Physics of Materials addresses this description at the elementary level. Based on an undergraduate level course taught at the Ecole Polytechnique, France, the main emphasis is on the conduction related phenomena (electronic properties) and the plastic behavior (ionic properties) of materials, such as metals and alloys, semiconductors, and ceramics. It assumes a basic grounding in statistical physics, quantum mechanics and elasticity but does not require prior knowledge of solid-state physics, to which it will serve as a useful introduction. The presentation of the course is followed by several examination problems, with solutions, which cover various specific applications of the general concepts and which will enable readers to test their understanding of these concepts.
Retrospective exhibition of twenty-five years of ... [Yves Saint Laurent's] work ... This book, published in connection with the exhibition, features over two hundred of Saint Laurent's couture designs, more than seventy in full color ... Also included is a fully illustrated survey of Saint Laurent's work photographed in black and white by Pierre Boulat and Nicholas Vreeland, supplemented by historically important photographs published in the fashion magazines of the era taken by such renowned photographers as Richard Avedon, Irving Penn, Bert Stern, Neal Barr, and Bill King"--Cover.
This illustrated volume presents vibrant photographs of Yves Saint Laurent's most important designs and is highlighted with essays and quotations that honor his legacy.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.