This book explores the major techniques involved in optimization, control theory, and calculus of variations. The book serves as a concise contemporary guide to optimal control theory, optimization, numerical methods and beyond. As such, it is a valuable source to learn mathematical modeling and the mathematical nature of optimization and optimal control. The presence of a variety of exercises solved down to numerical values is one of the main characteristic features of the book. Another one is its compactness, and the material’s usefulness in preparing and teaching several different university courses. The investigation of trends and their formation undertaken in the book leads seamlessly into extrapolation techniques and rigorous methods of scientific prediction. The research for this book was accomplished at the Russian Technological University (RTU) MIREA, based on the courses which have been taught at the RTU for many years.
This book addresses the most advanced to-date mathematical approach and numerical methods in electromagnetic field theory and wave propagation. It presents the application of developed methods and techniques to the analysis of waves in various guiding structures —shielded and open metal-dielectric waveguides of arbitrary cross-section, planar and circular waveguides filled with inhomogeneous dielectrics, metamaterials, chiral media, anisotropic media and layered media with absorption. It also looks into spectral properties of wave propagation for the waveguide families being considered, and the relevant mathematical techniques such as spectral theory of non-self-adjoint operator-valued functions are described, including rigorous proofs of the existence of various types of waves. Further, numerical methods constructed on the basis of the presented mathematical approach and the results of numerical modeling for various structures are also described in depth. The book is beneficial to a broad spectrum of readers ranging from pure and applied mathematicians in electromagnetic field theory to researchers and engineers who are familiar with mathematics. Further, it is also useful as a supplementary text for upper-level undergraduate students interested in learning more advanced topics of mathematical methods in electromagnetics.
This book addresses the most advanced to-date mathematical approach and numerical methods in electromagnetic field theory and wave propagation. It presents the application of developed methods and techniques to the analysis of waves in various guiding structures —shielded and open metal-dielectric waveguides of arbitrary cross-section, planar and circular waveguides filled with inhomogeneous dielectrics, metamaterials, chiral media, anisotropic media and layered media with absorption. It also looks into spectral properties of wave propagation for the waveguide families being considered, and the relevant mathematical techniques such as spectral theory of non-self-adjoint operator-valued functions are described, including rigorous proofs of the existence of various types of waves. Further, numerical methods constructed on the basis of the presented mathematical approach and the results of numerical modeling for various structures are also described in depth. The book is beneficial to a broad spectrum of readers ranging from pure and applied mathematicians in electromagnetic field theory to researchers and engineers who are familiar with mathematics. Further, it is also useful as a supplementary text for upper-level undergraduate students interested in learning more advanced topics of mathematical methods in electromagnetics.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.