The determination of permanent random measures and the representation of symmetric statistics as functionals of symmetrization random measures with some deterministic kernels, make it possible to clarify the influence of properties of a random measure on the limiting results for symmetric statistics and also to study the influence of the characteristic structure of these kernels. This approach in the theory of symmetric statistics has inspired the authors to investigate random permanents and their generating functions in detail. New limiting results for random permanents are basically obtained by employing the algebraic and analytical properties of the permanents of sampling matrices and their generating functions. This notion allows clarification of different schemes in the asymptotic analysis of symmetric statistics as the size of a sample n tends to infinity.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.