Seismic damage to rock tunnels from recent earthquakes indicates an urgent need for seismic assessment and aseismic design of underground structures. This book offers a comprehensive account of seismic performance and the response of underground structures under earthquake loading, necessary for adequate assessment and design. The book presents research methods for the rate-dependent mechanical behavior of rock and for the seismic behavior of underground structures. It describes analytical solutions to investigate the seismic response of tunnels subjected to seismic waves, toward an improved quantitative understanding of the seismic deformation and failure mechanism in both longitudinal and transversal aspects. A performance-based restoration design criterion and aseismic design are also proposed for future tunnel planning. Includes a detailed case study for the seismic performance assessment of rock tunnels under earthquake loading Explores the relationship between seismic damage to underground structures and ground deformation Covers a range of issues from mechanisms, analysis, assessment and design of both new tunnels and restoration projects The book is ideal for earthquake engineers and researchers, and will also be of interest to contractors, clients, researchers, lecturers, and advanced students working on tunnel engineering.
Seismic damage to rock tunnels from recent earthquakes indicates an urgent need for seismic assessment and aseismic design of underground structures. This book offers a comprehensive account of seismic performance and the response of underground structures under earthquake loading, necessary for adequate assessment and design. The book presents research methods for the rate-dependent mechanical behavior of rock and for the seismic behavior of underground structures. It describes analytical solutions to investigate the seismic response of tunnels subjected to seismic waves, toward an improved quantitative understanding of the seismic deformation and failure mechanism in both longitudinal and transversal aspects. A performance-based restoration design criterion and aseismic design are also proposed for future tunnel planning. Includes a detailed case study for the seismic performance assessment of rock tunnels under earthquake loading Explores the relationship between seismic damage to underground structures and ground deformation Covers a range of issues from mechanisms, analysis, assessment and design of both new tunnels and restoration projects The book is ideal for earthquake engineers and researchers, and will also be of interest to contractors, clients, researchers, lecturers, and advanced students working on tunnel engineering.
The fluid flow in fracture porous media plays a significant role in the assessment of deep underground reservoirs, such as through CO2 sequestration, enhanced oil recovery, and geothermal energy development. Many methods have been employed-from laboratory experimentation to theoretical analysis and numerical simulations-and allowed for many useful conclusions. This Special Issue aims to report on the current advances related to this topic. This collection of 58 papers represents a wide variety of topics, including on granite permeability investigation, grouting, coal mining, roadway, and concrete, to name but a few. We sincerely hope that the papers published in this Special Issue will be an invaluable resource for our readers.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.