Traditional methods for creating intelligent computational systems have privileged private "internal" cognitive and computational processes. In contrast, Swarm Intelligence argues that human intelligence derives from the interactions of individuals in a social world and further, that this model of intelligence can be effectively applied to artificially intelligent systems. The authors first present the foundations of this new approach through an extensive review of the critical literature in social psychology, cognitive science, and evolutionary computation. They then show in detail how these theories and models apply to a new computational intelligence methodology—particle swarms—which focuses on adaptation as the key behavior of intelligent systems. Drilling down still further, the authors describe the practical benefits of applying particle swarm optimization to a range of engineering problems. Developed by the authors, this algorithm is an extension of cellular automata and provides a powerful optimization, learning, and problem solving method. This important book presents valuable new insights by exploring the boundaries shared by cognitive science, social psychology, artificial life, artificial intelligence, and evolutionary computation and by applying these insights to the solving of difficult engineering problems. Researchers and graduate students in any of these disciplines will find the material intriguing, provocative, and revealing as will the curious and savvy computing professional.* Places particle swarms within the larger context of intelligentadaptive behavior and evolutionary computation. * Describes recent results of experiments with the particle swarmoptimization (PSO) algorithm * Includes a basic overview of statistics to ensure readers canproperly analyze the results of their own experiments using thealgorithm. * Support software which can be downloaded from the publisherswebsite, includes a Java PSO applet, C and Visual Basic sourcecode.
Computational Intelligence: Concepts to Implementations provides the most complete and practical coverage of computational intelligence tools and techniques to date. This book integrates various natural and engineering disciplines to establish Computational Intelligence. This is the first comprehensive textbook on the subject, supported with lots of practical examples. It asserts that computational intelligence rests on a foundation of evolutionary computation. This refreshing view has set the book apart from other books on computational intelligence. This book lays emphasis on practical applications and computational tools, which are very useful and important for further development of the computational intelligence field. Focusing on evolutionary computation, neural networks, and fuzzy logic, the authors have constructed an approach to thinking about and working with computational intelligence that has, in their extensive experience, proved highly effective. The book moves clearly and efficiently from concepts and paradigms to algorithms and implementation techniques by focusing, in the early chapters, on the specific con. It explores a number of key themes, including self-organization, complex adaptive systems, and emergent computation. It details the metrics and analytical tools needed to assess the performance of computational intelligence tools. The book concludes with a series of case studies that illustrate a wide range of successful applications. This book will appeal to professional and academic researchers in computational intelligence applications, tool development, and systems. - Moves clearly and efficiently from concepts and paradigms to algorithms and implementation techniques by focusing, in the early chapters, on the specific concepts and paradigms that inform the authors' methodologies - Explores a number of key themes, including self-organization, complex adaptive systems, and emergent computation - Details the metrics and analytical tools needed to assess the performance of computational intelligence tools - Concludes with a series of case studies that illustrate a wide range of successful applications - Presents code examples in C and C++ - Provides, at the end of each chapter, review questions and exercises suitable for graduate students, as well as researchers and practitioners engaged in self-study
China’s Assistance Program in Xinjiang: A Sociological Analysis examines the partnership assistance program (PAP) in Xinjiang of northwestern China, which was initially implemented by the Chinese government during the 1990s. It was dramatically upgraded in 2010 following the 2009 riot in Urumqi, the capital city of Xinjiang. The program requires that a total of nineteen provinces and municipalities from coastal and central regions of China provide a huge amount of financial, material, technical, human capital, and other resources and aid to Xinjiang for at least ten years (2010–2020). This most recent version of the PAP has generated drastic social, demographic, economic, and environmental changes in the region. Yuhui Li looks at changes in Xinjiang in recent years as a result of the PAP implementation. Xinjiang has become increasingly more industrialized, modernized, and urbanized, and is thus essential in helping the country realize the “China dream.” However, the heavily interventional PAP could bring about unexpected consequences. For example, it could potentially aggravate the already tense racial relations in the region.
Summary Andrew Bernstein is an ordinary kid who, unlike some other people, counted on his friends a lot-until he met the dragon Sky Lord and received superpowers from him to fight evil. Now Andrew was determined that his friends could now count on him. Unfortunately, a superhero does not just deal with some little thieves. For every superhero, there will always be a super villain. After breaking free from his seal, a demonic spirit named Spiritual Doom went on a rampage of destruction. Andrew immediately went to stop Doom but was badly defeated along with the loss of a dear friend. Spiritual Doom then decided to kill Andrew so that no one will have a chance to stop him. To do that, Doom kidnapped Andrew's friends and lured Andrew into his trap. Now Andrew must face a powerful force of evil, his friends' lives and the fate of the whole universe at stake, and his own destiny.
The natural social behavior of large groups of animals, such as flocks of birds, schools of fish, or colonies of ants has fascinated scientists for hundreds of years, if not longer, due to the intricate nature of their interactions and their ability to move and work together seemingly effortlessly. Innovations and Developments of Swarm Intelligence Applications explores the emerging realm of swarm intelligence, which finds its basis in the natural social behavior of animals. The study and application of this swarm behavior has led scientists to a new world of research as ways are found to apply this behavior to independent intelligent agents, creating complex solutions for real world applications. Worldwide contributions have been seamlessly combined in this comprehensive reference, providing a wealth of new information for researchers, academicians, students, and engineers.
Computational Intelligence: Concepts to Implementations provides the most complete and practical coverage of computational intelligence tools and techniques to date. This book integrates various natural and engineering disciplines to establish Computational Intelligence. This is the first comprehensive textbook on the subject, supported with lots of practical examples. It asserts that computational intelligence rests on a foundation of evolutionary computation. This refreshing view has set the book apart from other books on computational intelligence. This book lays emphasis on practical applications and computational tools, which are very useful and important for further development of the computational intelligence field. Focusing on evolutionary computation, neural networks, and fuzzy logic, the authors have constructed an approach to thinking about and working with computational intelligence that has, in their extensive experience, proved highly effective. The book moves clearly and efficiently from concepts and paradigms to algorithms and implementation techniques by focusing, in the early chapters, on the specific con. It explores a number of key themes, including self-organization, complex adaptive systems, and emergent computation. It details the metrics and analytical tools needed to assess the performance of computational intelligence tools. The book concludes with a series of case studies that illustrate a wide range of successful applications. This book will appeal to professional and academic researchers in computational intelligence applications, tool development, and systems. - Moves clearly and efficiently from concepts and paradigms to algorithms and implementation techniques by focusing, in the early chapters, on the specific concepts and paradigms that inform the authors' methodologies - Explores a number of key themes, including self-organization, complex adaptive systems, and emergent computation - Details the metrics and analytical tools needed to assess the performance of computational intelligence tools - Concludes with a series of case studies that illustrate a wide range of successful applications - Presents code examples in C and C++ - Provides, at the end of each chapter, review questions and exercises suitable for graduate students, as well as researchers and practitioners engaged in self-study
Advancements in the nature-inspired swarm intelligence algorithms continue to be useful in solving complicated problems in nonlinear, non-differentiable, and un-continuous functions as well as being applied to solve real-world applications. Recent Algorithms and Applications in Swarm Intelligence Research highlights the current research on swarm intelligence algorithms and its applications. Including research and survey and application papers, this book serves as a platform for students and scholars interested in achieving their studies on swarm intelligence algorithms and their applications.
From nature, we observe swarming behavior in the form of ant colonies, bird flocking, animal herding, honey bees, swarming of bacteria, and many more. It is only in recent years that researchers have taken notice of such natural swarming systems as culmination of some form of innate collective intelligence, albeit swarm intelligence (SI) - a metaphor that inspires a myriad of computational problem-solving techniques. In computational intelligence, swarm-like algorithms have been successfully applied to solve many real-world problems in engineering and sciences. This handbook volume serves as a useful foundational as well as consolidatory state-of-art collection of articles in the field from various researchers around the globe. It has a rich collection of contributions pertaining to the theoretical and empirical study of single and multi-objective variants of swarm intelligence based algorithms like particle swarm optimization (PSO), ant colony optimization (ACO), bacterial foraging optimization algorithm (BFOA), honey bee social foraging algorithms, and harmony search (HS). With chapters describing various applications of SI techniques in real-world engineering problems, this handbook can be a valuable resource for researchers and practitioners, giving an in-depth flavor of what SI is capable of achieving.
This book and its companion volume, LNCS vols. 6145 and 6146, constitute the proceedings of the International Conference on Swarm Intelligence (ICSI 2010) held in Beijing, the capital of China, during June 12-15, 2010. ICSI 2010 was the ?rst gathering in the world for researchers working on all aspects of swarm intelligence, and providedan academic forum for the participants to disseminate theirnewresearch?ndingsanddiscussemergingareasofresearch.Italsocreated a stimulating environment for the participants to interact and exchange inf- mation on future challenges and opportunities of swarm intelligence research. ICSI 2010 received 394 submissions from about 1241 authors in 22 countries and regions (Australia, Belgium, Brazil, Canada, China, Cyprus, Hong Kong, Hungary, India, Islamic Republic of Iran, Japan, Jordan, Republic of Korea, Malaysia, Mexico, Norway, Pakistan, South Africa, Chinese Taiwan, UK, USA, Vietnam) across six continents (Asia, Europe, North America, South America, Africa, and Oceania). Each submission was reviewed by at least three reviewers. Based on rigorous reviews by the Program Committee members and reviewers, 185 high-quality papers were selected for publication in the proceedings with the acceptance rate of 46.9%. The papers are organized in 25 cohesive sections covering all major topics of swarm intelligence research and development.
The LNCS series reports state-of-the-art results in computer science research, development, and education, at a high level and in both printed and electronic form. Enjoying tight cooperation with the R&D community, with numerous individuals, as well as with prestigious organizations and societies, LNCS has grown into the most comprehensive computer science research forum available. The scope of LNCS, including its subseries LNAI and LNBI, spans the whole range of computer science and information technology including interdisciplinary topics in a variety of application fields. In parallel to the printed book, each new volume is published electronically in LNCS Online.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.