Continuum Damage Mechanics and Numerical Applications" presents a systematic development of the theory of Continuum Damage Mechanics and its numerical engineering applications using a unified form of the mathematical formulations in anisotropic and isotropic damage models. The theoretical framework is based on the thermodynamic theory of energy and material dissipation and is described by a set of fundamental formulations of constitutive equations of damaged materials, development equations of the damaged state, and evolution equations of micro-structures. According to concepts of damage-dissipation of the material state and effective evolution of material properties, all these advanced equations, which take nonsymmetrized effects of damage aspects into account, are developed and modified from the traditional general failure models so they are more easily applied and verified in a wide range of engineering practices by experimental testing. Dr. Wohua Zhang is a Professor at Engineering Mechanics Research Center in Zhejiang University of China. Dr. Yuanqiang Cai is a Professor at Department of Civil Engineering in Zhejiang University of China.
Solutions for Biot's Poroelastic Theory in Key Engineering Fields: Theory and Applications provides solutions related to soil-structure interactions based on a poroelasticity theory, including moving loads such as trains. This book provides the commonly used methods for solving Biot's formulations and conclusions on fully-saturated soil dynamics. It presents various solution methods used in Biot's theory, such as the integral transformation method, the wave potential decomposition method, the finite element, and the 2.5D finite element method. It is suitable for graduate students, researchers and engineers who are interested in the soil-structure interaction problem with Biot's theory, as well as engineers in several subdisciplines. - Focuses on the structure-saturated soil interactions based on Biot's theory - Provides solutions (analytical and numerical) related to soil-structure interactions based on a poroelasticity theory, including moving loads such as trains - Includes common and novel solution methods for Biot's formulation
Solutions for Biot's Poroelastic Theory in Key Engineering Fields: Theory and Applications provides solutions related to soil-structure interactions based on a poroelasticity theory, including moving loads such as trains. This book provides the commonly used methods for solving Biot's formulations and conclusions on fully-saturated soil dynamics. It presents various solution methods used in Biot's theory, such as the integral transformation method, the wave potential decomposition method, the finite element, and the 2.5D finite element method. It is suitable for graduate students, researchers and engineers who are interested in the soil-structure interaction problem with Biot's theory, as well as engineers in several subdisciplines. - Focuses on the structure-saturated soil interactions based on Biot's theory - Provides solutions (analytical and numerical) related to soil-structure interactions based on a poroelasticity theory, including moving loads such as trains - Includes common and novel solution methods for Biot's formulation
Continuum Damage Mechanics and Numerical Applications" presents a systematic development of the theory of Continuum Damage Mechanics and its numerical engineering applications using a unified form of the mathematical formulations in anisotropic and isotropic damage models. The theoretical framework is based on the thermodynamic theory of energy and material dissipation and is described by a set of fundamental formulations of constitutive equations of damaged materials, development equations of the damaged state, and evolution equations of micro-structures. According to concepts of damage-dissipation of the material state and effective evolution of material properties, all these advanced equations, which take nonsymmetrized effects of damage aspects into account, are developed and modified from the traditional general failure models so they are more easily applied and verified in a wide range of engineering practices by experimental testing. Dr. Wohua Zhang is a Professor at Engineering Mechanics Research Center in Zhejiang University of China. Dr. Yuanqiang Cai is a Professor at Department of Civil Engineering in Zhejiang University of China.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.