Dealing with dam types such as gravity, counterfort and arch, this guide examines construction techniques, their development over the years, and their merits and demerits. As well as providing citations of dams, patents and codes, the text presents comparative data on world dams, updated to 1991.
Far from being separate entities, many social and engineering systems can be considered as complex network systems (CNSs) associated with closely linked interactions with neighbouring entities such as the Internet and power grids. Roughly speaking, a CNS refers to a networking system consisting of lots of interactional individuals, exhibiting fascinating collective behaviour that cannot always be anticipated from the inherent properties of the individuals themselves. As one of the most fundamental examples of cooperative behaviour, consensus within CNSs (or the synchronization of complex networks) has gained considerable attention from various fields of research, including systems science, control theory and electrical engineering. This book mainly studies consensus of CNSs with dynamics topologies - unlike most existing books that have focused on consensus control and analysis for CNSs under a fixed topology. As most practical networks have limited communication ability, switching graphs can be used to characterize real-world communication topologies, leading to a wider range of practical applications. This book provides some novel multiple Lyapunov functions (MLFs), good candidates for analysing the consensus of CNSs with directed switching topologies, while each chapter provides detailed theoretical analyses according to the stability theory of switched systems. Moreover, numerical simulations are provided to validate the theoretical results. Both professional researchers and laypeople will benefit from this book.
This book contains a comprehensive description of the mechanical equilibrium and deformation of membranes as a surface problem in differential geometry. Following the pioneering work by W Helfrich, the fluid membrane is seen as a nematic or smectic ? A liquid crystal film and its elastic energy form is deduced exactly from the curvature elastic theory of the liquid crystals. With surface variation the minimization of the energy at fixed osmotical pressure and surface tension gives a completely new surface equation in geometry that involves potential interest in mathematics. The investigations of the rigorous solution of the equation that have been carried out in recent years by the authors and their co-workers are presented here, among which the torus and the discocyte (the normal shape of the human red blood cell) may attract attention in cell biology. Within the framework of our mathematical model by analogy with cholesteric liquid crystals, an extensive investigation is made of the formation of the helical structures in a tilted chiral lipid bilayer, which has now become a hot topic in the fields of soft matter and biomembranes.
Written by leading experts in the field, this book highlights an authoritative and comprehensive introduction to thermo-mechanically coupled cyclic deformation and fatigue failure of shape memory alloys. The book deals with: (1) experimental observations on the cyclic deformation and fatigue failure in the macroscopic and microscopic scales; (2) molecular dynamics and phase-field simulations for the thermo-mechanical behaviors and underlying mechanisms during cyclic deformation; (3) macroscopic phenomenological and crystal plasticity-based cyclic constitutive models; and (4) fatigue failure models. This book is an important reference for students, practicing engineers and researchers who study shape memory alloys in the areas of mechanical, civil and aerospace engineering as well as materials science.
The most striking feature of the book is its modern outlookprovides a wonderful foundation. The most wonderful feature is its efficient style of expositionan excellent book." PHYSICS TODAY "There is nothing quite like itThose embarking on research into the optical properties of semiconductors will benefit from working through these chaptersa solid introduction to the optical properties of semiconductors" CONTEMPORARY PHYSICS
The book addresses many problems of ion exchange processes in LiNbO3, LiTaO3 and KTiOPO4 ferroelectrics and II-VI semiconductor single crystals for integrated optics applications. The authors start with the fundamentals of ion exchange processes in solids (Chapter 1). Chapter 1 can be considered also as an enlarged introduction to the book. Starting with Chapter 2, the general properties of LiNbO3 and LiTaO3 crystals, the methods used to study optical waveguides in these crystals as well as advanced preparation methods of optical waveguides are reviewed. Chapters 3, 4 and 5 are devoted to recent progress in the ion exchange processes in LiNbO3, LiTaO3 and KTiOPO4 crystals, respectively, and Chapter 6 summarizes the main applications of ion-exchanged waveguides in modern integrated optics. Finally, Chapter 7 deals with recently established ion exchange processes in II-VI semiconductors.
This book gives an account of the creative work of theorists at the largest Soviet secret laboratory, now the Russian Federal Nuclear Center at Arzamas-16, and concrete situations where some famous results on the essentials of theoretical physics emerged, so to speak, in the intermissions of the quest for bombs. The collection contains about 30 papers with brief comments. Some of them have received international recognition. But few people can conceive where they were written, since the publication of a paper by a secret physicist in a Soviet journal was supported by fictitious affiliations. Other papers are less well known, particularly because Soviet journals were not always translated into European languages. However, pioneer results contained in them merit more attention.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.