This is a very useful book which helps to understand the concepts of quantum computing and quantum information by well presented problems and detailed solutions … It is highly recommended for beginners as well as for advanced researchers.'zbMATHQuantum computing and quantum information are two of the fastest growing and most exciting research fields in physics. Entanglement, teleportation and the possibility of using the non-local behavior of quantum mechanics to factor integers in random polynomial time have also added to this new interest.This book presents a huge collection of problems in quantum computing and quantum information together with their detailed solutions, which will prove to be invaluable to students as well as researchers in these fields. Each chapter gives a comprehensive introduction to the topics. All the important concepts and areas such as quantum gates and quantum circuits, product Hilbert spaces, entanglement and entanglement measures, teleportation, Bell states, Bell measurement, Bell inequality, Schmidt decomposition, quantum Fourier transform, magic gate, von Neumann entropy, quantum cryptography, quantum error corrections, quantum games, number states and Bose operators, coherent states, squeezed states, Gaussian states, coherent Bell states, POVM measurement, quantum optics networks, beam splitter, phase shifter and Kerr Hamilton operator are included. A chapter on quantum channels has also been added. Furthermore a chapter on boolean functions and quantum gates with mapping bits to qubits is included.The topics range in difficulty from elementary to advanced. Almost all problems are solved in detail and most of the problems are self-contained. Each chapter also contains supplementary problems to challenge the reader. Programming problems with Maxima and SymbolicC++ implementations are also provided.
First published in 1973 Professor Akensone(tm)s book traces the series of religious and political controversies which have battered the state schools of Northern Ireland. After the governmente(tm)s admirably intentioned, but muddled, attempt to create a non-sectarian school system in the early 1920s, the educational system was progressively manipulated by sectarianism. The way in which the author describes how children are schooled reveals a great deal about the attitudes and values of the parental generation and also helps to explain the actions of later generations.
This is a self-contained, systematic and comprehensive introduction to all the subjects and techniques important in scientific computing. The style and presentation are readily accessible to undergraduates and graduates. A large number of examples, accompanied by complete C++ and Java code wherever possible, cover every topic.
Symbolic C++: An Introduction to Computer Algebra Using Object-Oriented Programming provides a concise introduction to C++ and object-oriented programming, using a step-by-step construction of a new object-oriented designed computer algebra system - Symbolic C++. It shows how object-oriented programming can be used to implement a symbolic algebra system and how this can then be applied to different areas in mathematics and physics. This second revised edition:- * Explains the new powerful classes that have been added to Symbolic C++. * Includes the Standard Template Library. * Extends the Java section. * Contains useful classes in scientific computation. * Contains extended coverage of Maple, Mathematica, Reduce and MuPAD.
Quantum computing and quantum information are two of the fastest growing and most exciting research fields in physics. Entanglement, teleportation and the possibility of using the non-local behavior of quantum mechanics to factor integers in random polynomial time have also added to this new interest. This book supplies a huge collection of problems in quantum computing and quantum information together with their detailed solutions, which will prove to be invaluable to students as well as researchers in these fields. All the important concepts and topics such as quantum gates and quantum circuits, product Hilbert spaces, entanglement and entanglement measures, deportation, Bell states, Bell inequality, Schmidt decomposition, quantum Fourier transform, magic gate, von Neumann entropy, quantum cryptography, quantum error corrections, number states and Bose operators, coherent states, squeezed states, Gaussian states, POVM measurement, quantum optics networks, beam splitter, phase shifter and Kerr Hamilton operator are included. The topics range in difficulty from elementary to advanced. Almost all problems are solved in detail and most of the problems are self-contained.
Quantum computing and quantum information are two of the fastest growing and most exciting research fields in physics. The possibilities of using the non-local behavior of quantum mechanics to factor integers in random polynomial time have also added to this new interest. This book supplies a collection of problems in quantum computing and quantum information together with their detailed solutions, which will prove to be invaluable to students as well as to research workers in these fields. All the important concepts and topics such as quantum gates and quantum circuits, entanglement, teleportation, Bell states, Bell inequality, Schmidt decomposition, quantum Fourier transform, magic gate, von Neumann entropy, quantum cryptography, quantum error correction, coherent states, squeezed states, POVM measurement, beam splitter and Kerr Hamilton operator are included. The topics range in difficulty from elementary to advanced. Almost all problems are solved in detail and most of the problems are self-contained.
The book presents examples of important techniques and theorems for Groups, Lie groups and Lie algebras. This allows the reader to gain understandings and insights through practice. Applications of these topics in physics and engineering are also provided. The book is self-contained. Each chapter gives an introduction to the topic.
This book provides an extensive collection of problems with detailed solutions in introductory and advanced matrix calculus. Supplementary problems in each chapter will challenge and excite the reader, ideal for both graduate and undergraduate mathematics and theoretical physics students. The coverage includes systems of linear equations, linear differential equations, integration and matrices, Kronecker product and vec-operation as well as functions of matrices. Furthermore, specialized topics such as spectral theorem, nonnormal matrices and mutually unbiased bases are included. Many of the problems are related to applications for group theory, Lie algebra theory, wavelets, graph theory and matrix-valued differential forms, benefitting physics and engineering students and researchers alike. It also branches out to problems with tensors and the hyperdeterminant. Computer algebra programs in Maxima and SymbolicC++ have also been provided.
Solving problems in quantum mechanics is an essential skill and research activity for physicists, mathematicians, engineers and others. Nowadays, the labor of scientific computation has been greatly eased by the advent of computer algebra packages, which do not merely perform number crunching, but also enable users to manipulate algebraic expressions and equations symbolically. For example, the manipulations of noncommutative operators, differentiation and integration can now be carried out algebraically by the computer algebra package.This book collects standard and advanced methods in quantum mechanics and implements them using SymbolicC++ and Maxima, two popular computer algebra packages. Throughout, the sample programs and their outputs are accompanied with explanatory text of the underlying mathematics and physics explained in detail. Selected problems have also been implemented using two other popular packages — Mathematica and Maple — while some problems are implemented in C++.Modern developments in quantum theory are covered extensively, beyond the standard quantum mechanical techniques. The new research topics added to this second edition are: entanglement, teleportation, Berry phase, Morse oscillator, Magnus expansion, wavelets, Pauli and Clifford groups, coupled Bose-Fermi systems, super-Lie algebras, etc.
The study of nonlinear dynamical systems has advanced tremendously in the last 20 years, making a big impact on science and technology. This book provides all the techniques and methods used in nonlinear dynamics. The concepts and underlying mathematics are discussed in detail." "The text has been designed for a one-year course at both the junior and senior levels in nonlinear dynamics. The topics discussed in the book are part of e-learning and distance learning courses conducted by the International School for Scientific Computing, University of Johannesburg."--BOOK JACKET.
This book provides a comprehensive collection of problems together with their detailed solutions for Bose, Spin, Fermi systems and also interacting systems. Supplementary problems are also provided. Exercises for representations of Lie groups and Lie algebras are also covered as well as computer algebra implementations. It is the only book which summarizes these topics from the quantum theory aspect in the form of exercises and solutions. The book is also self-contained.Both physicists and mathematicians will benefit from all the different techniques explained and worked out in detail.
Our self-contained volume provides an accessible introduction to linear and multilinear algebra as well as tensor calculus. Besides the standard techniques for linear algebra, multilinear algebra and tensor calculus, many advanced topics are included where emphasis is placed on the Kronecker product and tensor product. The Kronecker product has widespread applications in signal processing, discrete wavelets, statistical physics, Hopf algebra, Yang-Baxter relations, computer graphics, fractals, quantum mechanics, quantum computing, entanglement, teleportation and partial trace. All these fields are covered comprehensively.The volume contains many detailed worked-out examples. Each chapter includes useful exercises and supplementary problems. In the last chapter, software implementations are provided for different concepts. The volume is well suited for pure and applied mathematicians as well as theoretical physicists and engineers.New topics added to the third edition are: mutually unbiased bases, Cayley transform, spectral theorem, nonnormal matrices, Gâteaux derivatives and matrices, trace and partial trace, spin coherent states, Clebsch-Gordan series, entanglement, hyperdeterminant, tensor eigenvalue problem, Carleman matrix and Bell matrix, tensor fields and Ricci tensors, and software implementations.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.