The aim of this volume is to introduce new topics on the areas of difference, differential, integrodifferential and integral equations, evolution equations, control and optimisation theory, dynamic system theory, queuing theory and electromagnetism and their applications.
Special Interest Categories: Pure and applied mathematics, physics, optimisation and control, mechanics and engineering, nonlinear programming, economics, finance, transportation and elasticity. The usual method used in studying nonlinear problems such as topological method, variational method and others are generally only suited to the nonlinear problems with continuity and compactness. However, a lots of the problems appeared in theory and applications have no continuity and compactness, For example, differential equations and integral equations in infinite dimensional spaces, various equations defined on unbounded region are generally having no compactness. The problems can been divided into three types as follows: (1) Without using compact conditions but only using some inequalities related to some ordering, the existence and uniqueness of the fixed point for increasing operators, decreasing operators and mixed monotone operators, and the convergence of the iterative sequence are obtained. Also, these results have been used to nonlinear integral equations defined on unbounded regions. (2) Without using continuity conditions but only using a very relaxed weakly compact conditions, some new fixed point theorem of increasing operators are obtained. We have applied these results to nonlinear equations with discontinuous terms. (3) They systemly use the partial ordering methods to nonlinear integro-differential equations (include impulsive type) in Banach space.
This book primarily deals with non-linear operator theory in topological vector spaces and applications. Recently, non-linear functional analysis has become a main field of mathematics, which has played an important role in physics, mechanics and engineering, operations research and economics and many others for the past few decades. The book presents a survey of some main ideas, concepts, methods and applications in non-linear functional analysis.
Some of the most recent and significant results on homomorphisms and derivations in Banach algebras, quasi-Banach algebras, C*-algebras, C*-ternary algebras, non-Archimedean Banach algebras and multi-normed algebras are presented in this book. A brief introduction for functional equations and their stability is provided with historical remarks. Since the homomorphisms and derivations in Banach algebras are additive and R-linear or C-linear, the stability problems for additive functional equations and additive mappings are studied in detail. The latest results are discussed and examined in stability theory for new functional equations and functional inequalities in Banach algebras and C*-algebras, non-Archimedean Banach algebras, non-Archimedean C*-algebras, multi-Banach algebras and multi-C*-algebras. Graduate students with an understanding of operator theory, functional analysis, functional equations and analytic inequalities will find this book useful for furthering their understanding and discovering the latest results in mathematical analysis. Moreover, research mathematicians, physicists and engineers will benefit from the variety of old and new results, as well as theories and methods presented in this book.
This book provides an introduction to basic topics in Real Analysis and makes the subject easily understandable to all learners. The book is useful for those that are involved with Real Analysis in disciplines such as mathematics, engineering, technology, and other physical sciences. It provides a good balance while dealing with the basic and essential topics that enable the reader to learn the more advanced topics easily. It includes many examples and end of chapter exercises including hints for solutions in several critical cases. The book is ideal for students, instructors, as well as those doing research in areas requiring a basic knowledge of Real Analysis. Those more advanced in the field will also find the book useful to refresh their knowledge of the topic. Features Includes basic and essential topics of real analysis Adopts a reasonable approach to make the subject easier to learn Contains many solved examples and exercise at the end of each chapter Presents a quick review of the fundamentals of set theory Covers the real number system Discusses the basic concepts of metric spaces and complete metric spaces
This book discusses the rapidly developing subject of mathematical analysis that deals primarily with stability of functional equations in generalized spaces. The fundamental problem in this subject was proposed by Stan M. Ulam in 1940 for approximate homomorphisms. The seminal work of Donald H. Hyers in 1941 and that of Themistocles M. Rassias in 1978 have provided a great deal of inspiration and guidance for mathematicians worldwide to investigate this extensive domain of research. The book presents a self-contained survey of recent and new results on topics including basic theory of random normed spaces and related spaces; stability theory for new function equations in random normed spaces via fixed point method, under both special and arbitrary t-norms; stability theory of well-known new functional equations in non-Archimedean random normed spaces; and applications in the class of fuzzy normed spaces. It contains valuable results on stability in random normed spaces, and is geared toward both graduate students and research mathematicians and engineers in a broad area of interdisciplinary research.
Functions of a Complex Variable provides all the material for a course on the theory of functions of a complex variable at the senior undergraduate and beginning graduate level. Also suitable for self-study, the book covers every topic essential to training students in complex analysis. It also incorporates special topics to enhance students' under
Since the 1960s, many researchers have extended topological degree theory to various non-compact type nonlinear mappings, and it has become a valuable tool in nonlinear analysis. Presenting a survey of advances made in generalizations of degree theory during the past decade, this book focuses on topological degree theory in normed spaces and its ap
The purpose of this book is to give a comprehensive introduction to the study of non-linear operator theory in probabilistic metric spaces. This book is introduced as a survey of the latest and new results on the following topics: Basic theory of probabilistic metric spaces; Fixed point theorems for single-valued and multi-valued mappings in probabilistic metric spaces; Ekeland's variational principle and Caristi's fixed point theorem in probabilistic metric spaces; Coincidence point theorems, minimisation and fixed degree theorems in probabilistic metric spaces; Probabilistic contractors, accretive mappings and topological degree in probabilistic normed spaces; Nonlinear semigroups and differential equations in probabilistic metric spaces; KKM theorems, minimax theorems and variational inequalities.
In this book, generally speaking, some properties of bitopological spaces generated by certain non-symmetric functions are studied. These functions, called "probabilistic quasi-pseudo-metrics" and "fuzzy quasi-pseudo-metrics", are generalisations of classical quasi-pseudo metrics. For the sake of completeness as well as for convenience and easy comparison, most of the introductory paragraphs are mainly devoted to fundamental notions and results from the classical -- deterministic or symmetric -- theory.
This book introduces advanced numerical-functional analysis to beginning computer science researchers. The reader is assumed to have had basic courses in numerical analysis, computer programming, computational linear algebra, and an introduction to real, complex, and functional analysis. Although the book is of a theoretical nature, each chapter contains several new theoretical results and important applications in engineering, in dynamic economics systems, in input-output system, in the solution of nonlinear and linear differential equations, and optimization problem.
This self-contained monograph presents an overview of fuzzy operator theory in mathematical analysis. Concepts, principles, methods, techniques, and applications of fuzzy operator theory are unified in this book to provide an introduction to graduate students and researchers in mathematics, applied sciences, physics, engineering, optimization, and operations research. New approaches to fuzzy operator theory and fixed point theory with applications to fuzzy metric spaces, fuzzy normed spaces, partially ordered fuzzy metric spaces, fuzzy normed algebras, and non-Archimedean fuzzy metric spaces are presented. Surveys are provided on: Basic theory of fuzzy metric and normed spaces and its topology, fuzzy normed and Banach spaces, linear operators, fundamental theorems (open mapping and closed graph), applications of contractions and fixed point theory, approximation theory and best proximity theory, fuzzy metric type space, topology and applications.
The aim of this volume is to introduce and exchange recent new topics on the areas of inequality theory and their applications dealing in pure and applied mathematics.
This volume deals with new topics in the areas of fixed point theory, variational inequality and complementarity problem theory, non-linear ergodic theory, difference, differential and integral equations, control and optimisation theory, dynamic system theory, inequality theory, stochastic analysis and probability theory, and their applications.
The aim of this volume is to introduce new topics on the areas of difference, differential, integrodifferential and integral equations, evolution equations, control and optimisation theory, dynamic system theory, queuing theory and electromagnetism and their applications.
This book discusses the rapidly developing subject of mathematical analysis that deals primarily with stability of functional equations in generalized spaces. The fundamental problem in this subject was proposed by Stan M. Ulam in 1940 for approximate homomorphisms. The seminal work of Donald H. Hyers in 1941 and that of Themistocles M. Rassias in 1978 have provided a great deal of inspiration and guidance for mathematicians worldwide to investigate this extensive domain of research. The book presents a self-contained survey of recent and new results on topics including basic theory of random normed spaces and related spaces; stability theory for new function equations in random normed spaces via fixed point method, under both special and arbitrary t-norms; stability theory of well-known new functional equations in non-Archimedean random normed spaces; and applications in the class of fuzzy normed spaces. It contains valuable results on stability in random normed spaces, and is geared toward both graduate students and research mathematicians and engineers in a broad area of interdisciplinary research.
Since the 1960s, many researchers have extended topological degree theory to various non-compact type nonlinear mappings, and it has become a valuable tool in nonlinear analysis. Presenting a survey of advances made in generalizations of degree theory during the past decade, this book focuses on topological degree theory in normed spaces and its ap
The aim of this volume is to introduce recent new topics in the areas of fixed point theory, variational inequality and complementarity problem theory, non-linear ergodic theory difference, differential and integral equations, control and optimisation theory, dynamic system theory, inequality theory, stochastic analysis and probability theory, and their applications.
This self-contained monograph presents an overview of fuzzy operator theory in mathematical analysis. Concepts, principles, methods, techniques, and applications of fuzzy operator theory are unified in this book to provide an introduction to graduate students and researchers in mathematics, applied sciences, physics, engineering, optimization, and operations research. New approaches to fuzzy operator theory and fixed point theory with applications to fuzzy metric spaces, fuzzy normed spaces, partially ordered fuzzy metric spaces, fuzzy normed algebras, and non-Archimedean fuzzy metric spaces are presented. Surveys are provided on: Basic theory of fuzzy metric and normed spaces and its topology, fuzzy normed and Banach spaces, linear operators, fundamental theorems (open mapping and closed graph), applications of contractions and fixed point theory, approximation theory and best proximity theory, fuzzy metric type space, topology and applications.
This book provides an introduction to basic topics in Real Analysis and makes the subject easily understandable to all learners. The book is useful for those that are involved with Real Analysis in disciplines such as mathematics, engineering, technology, and other physical sciences. It provides a good balance while dealing with the basic and essential topics that enable the reader to learn the more advanced topics easily. It includes many examples and end of chapter exercises including hints for solutions in several critical cases. The book is ideal for students, instructors, as well as those doing research in areas requiring a basic knowledge of Real Analysis. Those more advanced in the field will also find the book useful to refresh their knowledge of the topic. Features Includes basic and essential topics of real analysis Adopts a reasonable approach to make the subject easier to learn Contains many solved examples and exercise at the end of each chapter Presents a quick review of the fundamentals of set theory Covers the real number system Discusses the basic concepts of metric spaces and complete metric spaces
Functions of a Complex Variable provides all the material for a course on the theory of functions of a complex variable at the senior undergraduate and beginning graduate level. Also suitable for self-study, the book covers every topic essential to training students in complex analysis. It also incorporates special topics to enhance students' under
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.