This book presents the findings of the study, and offers analysis of both its methodological and policy-related implications. On the methodology side, it assesses and validates the valuation workshop approach; appraises the effect of distance on willingness to pay and the influence of the respondents’ ability to pay. From a policy perspective, the book examines the attitudes and preference of respondents on trade-offs between economic growth and ecological use.
Full-Spectrum Responsive Photocatalytic Materials: From Fundamentals to Applications provides a comprehensive overview on the design, synthesis concepts, mechanisms, characterization techniques, and advances and limitations in applications of full-spectrum responsive photocatalytic materials. The book starts with the fundamentals of full-spectrum responsive materials. It then discusses the problems of most semiconductors that are not active in the whole solar spectrum and explains the benefits of utilizing full-spectrum responsive photocatalysts. Other sections describe examples of full-spectrum responsive photocatalysts classified by material types and provide the design principles and characterization protocols for these promising materials. Photocatalysis technology based on semiconductor materials holds great promise in various fields due to its potential advantages in energy-saving, cost and environmental impact. Maximizing the utilization of solar energy is always the target of pursuits in the areas of photocatalysis, and understanding and constructing appropriate full-spectrum (UV-VIS-NIR) responsive photocatalytic materials offer ways to better realize the practical utilization of photocatalysis. - Provides new insights into full-spectrum (UV-VIS-NIR) responsive photocatalysts and successful approaches for developing these materials - Assists readers working to develop more efficient catalysts and establish a solid structure–activity correlation - Suggests possibilities for the alteration of conventional photocatalysts to utilize the full spectrum of solar light
Lasso peptides form a growing family of fascinating ribosomally-synthesized and post-translationally modified peptides produced by bacteria. They contain 15 to 24 residues and share a unique interlocked topology that involves an N-terminal 7 to 9-residue macrolactam ring where the C-terminal tail is threaded and irreversibly trapped. The ring results from the condensation of the N-terminal amino group with a side-chain carboxylate of a glutamate at position 8 or 9, or an aspartate at position 7, 8 or 9. The trapping of the tail involves bulky amino acids located in the tail below and above the ring and/or disulfide bridges connecting the ring and the tail. Lasso peptides are subdivided into three subtypes depending on the absence (class II) or presence of one (class III) or two (class I) disulfide bridges. The lasso topology results in highly compact structures that give to lasso peptides an extraordinary stability towards both protease degradation and denaturing conditions. Lasso peptides are generally receptor antagonists, enzyme inhibitors and/or antibacterial or antiviral (anti-HIV) agents. The lasso scaffold and the associated biological activities shown by lasso peptides on different key targets make them promising molecules with high therapeutic potential. Their application in drug design has been exemplified by the development of an integrin antagonist based on a lasso peptide scaffold. The biosynthesis machinery of lasso peptides is therefore of high biotechnological interest, especially since such highly compact and stable structures have to date revealed inaccessible by peptide synthesis. Lasso peptides are produced from a linear precursor LasA, which undergoes a maturation process involving several steps, in particular cleavage of the leader peptide and cyclization. The post-translational modifications are ensured by a dedicated enzymatic machinery, which is composed of an ATP-dependent cysteine protease (LasB) and a lactam synthetase (LasC) that form an enzymatic complex called lasso synthetase. Microcin J25, produced by Escherichia coli AY25, is the archetype of lasso peptides and the most extensively studied. To date only around forty lasso peptides have been isolated, but genome mining approaches have revealed that they are widely distributed among Proteobacteria and Actinobacteria, particularly in Streptomyces, making available a rich resource of novel lasso peptides and enzyme machineries towards lasso topologies.
This book aims to explain the gap between Western theories and the Chinese administration reform experiences. The book provides insights into how the Chinese government can improve its efficiency and legitimacy through reforms and adapt Western theories with Chinese Characteristics. It also looks at the impact of modern technological innovation on reforms and why innovation is a critical key to the political development of China or other countries. The authors also explain how the Internet affects government efficiency. This timely book is an invaluable reference to better understand the changing theory of global public administration and its practice in developing countries and will interest researchers and policy makers in development studies and public administration and governance.
This book presents the findings of the study, and offers analysis of both its methodological and policy-related implications. On the methodology side, it assesses and validates the valuation workshop approach; appraises the effect of distance on willingness to pay and the influence of the respondents’ ability to pay. From a policy perspective, the book examines the attitudes and preference of respondents on trade-offs between economic growth and ecological use.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.