This book is the first systematic account of mega urban projects in China, covering their construction, operation and planning. It is a detailed examination of the planning and construction of Hongqiao and its impact on local residents. In short, the aim of this book is to examine the process of planning and development of the Hongqiao transportation and commercial zone, to explore its relationship to urban development and spatial restructuring in Shanghai, and in doing so to comment on and critique the nature of urban change in contemporary China, which is characterized as property- and infrastructure-driven. Mega urban projects are arguably the quintessential symbol of entrepreneurial urbanism, and it is no coincidence that they have become a familiar part of the urban scene throughout the world, not least in East Asia. They can be seen as both a consequence of, and a response to, the deindustrialization of leading cities, first in North America and Europe and then in East Asia, as economies transitioned to globalized neoliberalism. This book provides a comprehensive overview of the main features of the land-based urban growth coalition formed in Hongqiao by introducing the detailed picture of the Hongqiao project, and it outlines the recent example of the competitive rush to urban projects in China's largest cities that has led to the proliferation of new financial districts in Beijing and Guangzhou.
Multi-Wave Mixing Processes - From Ultrafast Polarization Beats to Electromagnetically Induced Transparency" discusses the interactions of efficient multi-wave mixing (MWM) processes enhanced by atomic coherence in multilevel atomic systems. It covers topics in five major areas: attosecond and femtosecond polarization beats of four-wave mixing (FWM) processes; heterodyne detection of FWM, six-wave mixing (SWM) and eight-wave mixing (EWM) processes; Raman and Rayleigh enhanced polarization beats; coexistence and interactions of MWM processes via electromagnetically induced transparency(EIT); multi-dressing MWM processes. The book is intended for researchers, advanced undergraduate and graduate students in Nonlinear Optics. Dr. Yanpeng Zhang is a professor at the Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University. Dr. Min Xiao is a professor of Physics at University of Arkansas, Fayetteville, U.S.A.
Coherent Control of Four-Wave Mixing" discusses the frequency, temporal and spatial domain interplays of four-wave mixing (FWM) processes induced by atomic coherence in multi-level atomic systems. It covers topics in five major areas: the ultrafast FWM polarization beats due to interactions between multi-color laser beams and multi-level media; coexisting Raman-Rayleigh-Brillouin-enhanced polarization beats due to color-locking noisy field correlations; FWM processes with different kinds of dual-dressed schemes in ultra-thin, micrometer and long atomic cells; temporal and spatial interference between FWM and six-wave mixing (SWM) signals in multi-level electromagnetically induced transparency (EIT) media; spatial displacements and splitting of the probe and generated FWM beams, as well as the observations of gap soliton trains, vortex solitons, and stable multicomponent vector solitons in the FWM signals. The book is intended for scientists, researchers, advanced undergraduate and graduate students in Nonlinear Optics. Dr. Yanpeng Zhang is a professor and Zhiqiang Nie is a Ph. D. student at the Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, China. Dr. Min Xiao is a professor of physics at the University of Arkansas, Fayetteville, U.S.A.
Multi-wave mixing gives rise to new frequency components due to the interaction of light signals with a suitable nonlinear medium. In this book a systematic framework for the control of these processes is used to lead readers through a plethora of related effects and techniques.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.