The book studies the “Manchurian immigrants” from many important aspects suchas agricultural operation, education, religion, and women’s issues. It contains thefollowing features: first, readers can get deeper understanding on the “Manchurianimmigrants” policies by investigating the agriculture-based social life of the“Manchurian immigrants” in Northeast China; second, studying the life conditions ofthe “Manchurian immigrants” can make up for the lack of researches in related fieldto some extent; third, readers are given chances by this book to learn Japanese societyand Japanese people from another facet.
The book studies the “Manchurian immigrants” from many important aspects suchas agricultural operation, education, religion, and women’s issues. It contains thefollowing features: first, readers can get deeper understanding on the “Manchurianimmigrants” policies by investigating the agriculture-based social life of the“Manchurian immigrants” in Northeast China; second, studying the life conditions ofthe “Manchurian immigrants” can make up for the lack of researches in related fieldto some extent; third, readers are given chances by this book to learn Japanese societyand Japanese people from another facet.
This book presents advances in biomedical imaging analysis and processing techniques using time dependent medical image datasets for computer aided diagnosis. The analysis of time-series images is one of the most widely appearing problems in science, engineering, and business. In recent years this problem has gained importance due to the increasing availability of more sensitive sensors in science and engineering and due to the wide-spread use of computers in corporations which have increased the amount of time-series data collected by many magnitudes. An important feature of this book is the exploration of different approaches to handle and identify time dependent biomedical images. Biomedical imaging analysis and processing techniques deal with the interaction between all forms of radiation and biological molecules, cells or tissues, to visualize small particles and opaque objects, and to achieve the recognition of biomedical patterns. These are topics of great importance to biomedical science, biology, and medicine. Biomedical imaging analysis techniques can be applied in many different areas to solve existing problems. The various requirements arising from the process of resolving practical problems motivate and expedite the development of biomedical imaging analysis. This is a major reason for the fast growth of the discipline.
High-Entropy Materials Significant update of knowledge in the field of high-entropy materials, including promising new high-entropy ceramics High-Entropy Materials provides information on state-of-the-art development in the field of high-entropy materials, including high-entropy alloys, high-entropy ceramics, and a variety of their applications, covering many core topics to provide a thorough and detailed overview of the subject. The book also thoroughly explores the applications of high-entropy materials in various areas, such as EBC/TBC coating, superhard and wear resistance coating, nuclear energy, batteries, catalysts, thermoelectric, supercapacitors, biocompatible structure, and microelectronics. In High-Entropy Materials, readers can expect to find specific information on: Basics of high entropy materials, structural features and thermodynamics of high-entropy materials, and theoretical design in high-entropy materials Synthesis and processing of high-entropy materials and characterization of high-entropy materials, as well as their mechanical and functional properties Challenges and future directions of high-entropy materials, a relatively new type of material that has been in development only since the early 2000s How high-entropy materials are a horizon-broadening class of materials that can significantly further humanity’s pursuit of progress Focusing on the fundamentals and developments of high-entropy alloys and ceramics as well as on their microstructure and properties for a wide range of applications, High-Entropy Materials is an essential resource on the subject for materials scientists, metallurgists, mechanical engineers, and professionals in the aerospace industries.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.