This thesis presents significant advances in the imaging and theory of the ultrafast dynamics of surface plasmon polariton fields. The author details construction of a sub-10 femtosecond and sub-10 nanometer spatiotemporal resolution ultrafast photoemission microscope which is subsequently used for the discovery of topological meron and skyrmion-like plasmonic quasiparticles. In particular, this enabled the creation of movies of the surface plasmon polariton fields evolving on sub-optical wavelength scales at around 0.1 femtosecond per image frame undergoing vortex phase evolution. The key insight that the transverse spin of surface plasmon polaritons undergoes a texturing into meron or skyrmion-like topological quasiparticles (defined by the geometric charge of the preparation) follows. In addition, this thesis develops an analytical theory of these new topological quasiparticles, opening new avenues of research, while the ultrafast microscopy techniques established within will also be broadly applicable to studies of nanoscale optical excitations in electronic materials.
Fermentative Hydrogen Production: From Fundamentals and Processes is a comprehensive examination of the theoretical and operational aspects of dark fermentative production of hydrogen. The book presents the latest technological developments, analyzes advantages and challenges, and discusses the potential for the maturity of dark fermentation. Part One analyzes the various technologies for hydrogen production, purification, storage, applications, and safety. In Part Two, first to third generation feedstocks are reviewed, as well as co-fermentation and solid and liquid wastes. Part Three examines the typical hydrogen-producing microorganisms in both pure and mixed cultures, along with sequencing techniques, pretreatment considerations, and engineering options. Part Four discusses influencing factors such as operational parameters, promotors, inhibitors, and has a dedicated section on the effects of Iron. Finally, Part Five directly compares dark hydrogen with other hydrogen production technologies through life cycle environmental impact assessments, highlighting bottlenecks and challenges in scaling up these technologies. - Critically reviews the fundamentals and environmental impacts of biological hydrogen production technologies - Evaluates and compares various feedstocks for biohydrogen production, including co-fermentation of different feedstocks - Examines the use of pure and mixed cultures - Provides case studies with real-world applications of the technologies discussed in the book
This book comprehensively introduces fundamentals and applications of fermentative hydrogen production from organic wastes, consisting of eight chapters, covering the microbiology, biochemistry and enzymology of hydrogen production, the enrichment of hydrogen-producing microorganisms, the pretreatment of various organic wastes for hydrogen production, the influence of different physicochemical factors on hydrogen production, the kinetic models and simulation of biological process of fermentative hydrogen production, the optimization of biological hydrogen production process and the fermentative hydrogen production from sewage sludge. The book summarizes the most recent advances that have been made in this field and discusses bottlenecks of further development. This book gives a holistic picture of this technology and details the knowledge through illustrative diagrams, flow charts, and comprehensive tables. It is intended for undergraduate and graduate students who are interested in bioenergy and wastes management, researchers exploring microbial fermentation process, and engineers working on system optimization or other bioenergy applications.
In this PhD thesis, Yue Yanan addresses a long-overlooked and critical question in the development of non-viral vectors for gene delivery. The author determines that those uncomplexed and cationic polymer chains free in the solution mixture of polymer and DNA facilitate and promote gene transfection. Furthermore, by using a combination of synthetic chemistry, polymer physics and molecular biology, Yue confirms that it is those cationic polymer chains free in the solution mixture, rather than those bound to DNA chains, that play a decisive role in intracellular trafficking. Instead of the previously proposed and widely accepted “proton sponge” model, the author's group propose a new hypothesis based on the results of several well-designed and decisive experiments. These results show that free polycationic chains with a length of more than ~10 nm are able to partially block the fusion between different endocytic vesicles, including the endocytic-vesicle-to-endolysosome pathway. This thesis is highly original and its results greatly deepen our understanding of polymer-mediated gene transfection. More importantly, it provides new insights into the rational design of next-generation superior polymeric gene-delivery vectors.
Using empirical research data and his first-hand experiences, the author argues that (1) the Fourth Economic Power is truly emerging with mainland China being the center stage, and the Chinese Diaspora being the key players; (2) understanding guanxi (connections), among other things, represents the key to understanding doing business in China; (3) China is not yet ready for democracy; benevolent authoritarianism will most likely define China's political life; (4) China's corruption problem—either of a structural nature or a moral nature—is solvable; (5) education holds China's future; and (6) Chinese family can be the most sustainable resource of the Fourth Power.
This book introduces high-temperature shock technology (HTS), a new method for ultra-fast synthesis of nanomaterials. HTS cannot only effectively avoid surface oxidation, agglomeration and immiscibility during the preparation of nanomaterials but also eliminate the defects or impurities of carbon-based nanomaterials. The book first presents the unique working devices of HTS. Then, it explains the working principle of its rapid heating and cooling rate at the millisecond level. In addition, the book highlights the latest research achievements of this technology in catalysis, batteries, carbon materials and new material devices, and puts forward the cost-benefit analysis and future development direction. Given its scope, the book appeals to a broad readership, particularly researchers engaged in materials, chemistry, new energy and other related fields, as well as teachers of relevant majors in colleges and universities.
This book systematically narrates the fundamentals, methods, and recent advances of evolutionary deep neural architecture search chapter by chapter. This will provide the target readers with sufficient details learning from scratch. In particular, the method parts are devoted to the architecture search of unsupervised and supervised deep neural networks. The people, who would like to use deep neural networks but have no/limited expertise in manually designing the optimal deep architectures, will be the main audience. This may include the researchers who focus on developing novel evolutionary deep architecture search methods for general tasks, the students who would like to study the knowledge related to evolutionary deep neural architecture search and perform related research in the future, and the practitioners from the fields of computer vision, natural language processing, and others where the deep neural networks have been successfully and largely used in their respective fields.
This thesis presents significant advances in the imaging and theory of the ultrafast dynamics of surface plasmon polariton fields. The author details construction of a sub-10 femtosecond and sub-10 nanometer spatiotemporal resolution ultrafast photoemission microscope which is subsequently used for the discovery of topological meron and skyrmion-like plasmonic quasiparticles. In particular, this enabled the creation of movies of the surface plasmon polariton fields evolving on sub-optical wavelength scales at around 0.1 femtosecond per image frame undergoing vortex phase evolution. The key insight that the transverse spin of surface plasmon polaritons undergoes a texturing into meron or skyrmion-like topological quasiparticles (defined by the geometric charge of the preparation) follows. In addition, this thesis develops an analytical theory of these new topological quasiparticles, opening new avenues of research, while the ultrafast microscopy techniques established within will also be broadly applicable to studies of nanoscale optical excitations in electronic materials.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.