Techniques based on the method of modal expansions, the Rayleigh-Stevenson expansion in inverse powers of the wavelength, and also the method of moments solution of integral equations are essentially restricted to the analysis of electromagnetic radiating structures which are small in terms of the wavelength. It therefore becomes necessary to employ approximations based on "high-frequency techniques" for performing an efficient analysis of electromagnetic radiating systems that are large in terms of the wavelength. One of the most versatile and useful high-frequency techniques is the geometrical theory of diffraction (GTD), which was developed around 1951 by J. B. Keller [1,2,3]. A class of diffracted rays are introduced systematically in the GTD via a generalization of the concepts of classical geometrical optics (GO). According to the GTD these diffracted rays exist in addition to the usual incident, reflected, and transmitted rays of GO. The diffracted rays in the GTD originate from certain "localized" regions on the surface of a radiating structure, such as at discontinuities in the geometrical and electrical properties of a surface, and at points of grazing incidence on a smooth convex surface as illustrated in Fig. 1. In particular, the diffracted rays can enter into the GO shadow as well as the lit regions. Consequently, the diffracted rays entirely account for the fields in the shadow region where the GO rays cannot exist.
Memories are still vivid on the incident: on 29 January 2010, a five-storey building at 45J Ma Tau Wai Road, To Kwa Wan, Hong Kong collapsed, causing four deaths and two injuries. The tragedy has raised public concerns about the safety of many of Hong Kong's old and dilapidated buildings. Realising that the presence of ageing buildings lacking proper care and maintenance poses potential threats to residents and the public at large, since 2012, the Buildings Department has implemented the Mandatory Building Inspection Scheme (MBIS) to carry out inspection and rectification works for buildings aged 30 years or above. This book, as a pioneer to review and examine the statistics and distributions of the aged buildings in Hong Kong, provides critical insights on the building decay and neglect problems. The statistical information highlighted in the book also serves to project the estimated number of aged buildings to be covered by the MBIS in the future, and the demand of professional workforce expected for the successful implementation of MBIS. The book is useful for the practising professionals in the building industry, such as surveyors, engineers and government officials. It is also an excellent reference for students and researchers in Surveying, Construction Management and related disciplines.
In recent years, the city many hoped would help democratize China has instead become a research setting in which to study China’s increasing intolerance of dissent. Since Hong Kong’s return to Chinese sovereignty in 1997, China’s treatment of Hong Kong could be divided into three stages: non-intervention, intervention, and securitization. If the July 1 march in 2003 is a watershed that marked Beijing’s change from non-intervention to intervention, this book suggests that the Umbrella Movement in 2014 is another watershed that marked Beijing’s change from intervention to securitization. This book is a theoretically driven case study of the Umbrella Movement, a massive sit-in that paralyzed key business and retail districts for 79 days in Hong Kong in 2014. Many Hongkongers believe that they have the right to a fair election of the chief executive, and Beijing’s insistence on vetting candidates prompted the outbreak of the Umbrella Movement. Drawing insights from the securitization theory and fear appeal literature, the book proposes the framework of “security appeal.” It argues that the outbreak of the Umbrella Movement resulted from a premature use of hard repression, that is, before the government convinced the general public that the Umbrella Movement was a threat. The eventual successful securitization entails a general acceptance of the threatening nature of the Umbrella Movement and agreement with its crackdown. This book concludes that one of the consequences of the securitization of the Umbrella Movement is Beijing’s eventual switch to the policy of “patriotocracy” – a system that allocates power and resources based on one’s professed patriotism – in lieu of One Country, Two Systems. The policy implications and theoretical and methodological contributions of this book will be of interest to scholars and students of security studies; Chinese politics; and various social science disciplines, including political science, psychology, criminology, and sociology.
The volume contains essential information on elective (non-emergency) hand surgery practice. The author, M Merle, a world authority in surgery of the rheumatoid hand, synthesizes the depth of his experience into the book, and presents the management of these conditions in a clear manner. All the elective procedures are described in great detail and depth. The quality of illustrations is outstanding and is superior to any other hand textbooks on the market. There are very few textbooks on elective hand surgery and this will be an essential resource for orthopedic surgeons, rheumatologists, and physiotherapists.
For the many different deterministic non-linear dynamic systems (physical, mechanical, technical, chemical, ecological, economic, and civil and structural engineering), the discovery of irregular vibrations in addition to periodic and almost periodic vibrations is one of the most significant achievements of modern science. An in-depth study of the theory and application of non-linear science will certainly change one's perception of numerous non-linear phenomena and laws considerably, together with its great effects on many areas of application. As the important subject matter of non-linear science, bifurcation theory, singularity theory and chaos theory have developed rapidly in the past two or three decades. They are now advancing vigorously in their applications to mathematics, physics, mechanics and many technical areas worldwide, and they will be the main subjects of our concern. This book is concerned with applications of the methods of dynamic systems and subharmonic bifurcation theory in the study of non-linear dynamics in engineering. It has grown out of the class notes for graduate courses on bifurcation theory, chaos and application theory of non-linear dynamic systems, supplemented with our latest results of scientific research and materials from literature in this field. The bifurcation and chaotic vibration of deterministic non-linear dynamic systems are studied from the viewpoint of non-linear vibration.
Total joint replacement (TJR) is one of the success stories of modern medicine, which has reliably provided dramatic pain relief and improved the quality of life for several million patients with a destructive end-stage joint disease. However, the main long-term complication of TJR surgery is prosthetic loosening, often combined with osteolysis following wear, corrosion and failure of the implant. Over the past decade, the biological interactions between various types of wear particles and metal ions from metal-on-polyethylene (MoPE), metal-on-metal (MoM) and ceramic-on-ceramic (CoC) implants, endogenous danger signals (alarmins) and/or bacterial components of the microbiome with the innate and adaptive host defence (immune) system, have become better known. In this chapter, we discuss the role of biomaterials and implant-derived wear and corrosion debris in loosening of TJRs, with particular emphasis on MoM total hip replacements (THR) and hip resurfacing arthroplasty (HRA).
The newest addition to the Green Chemistry and Chemical Engineering series from CRC Press, Biofuels and Bioenergy: Processes and Technologies provides a succinct but in-depth introduction to methods of development and use of biofuels and bioenergy. The book illustrates their great appeal as tools for solving the economic and environmental challenges associated with achieving energy sustainability and independence through the use of clean, renewable alternative energy. Taking a process engineering approach rooted in the fuel and petrochemical fields, this book masterfully integrates coverage of current conventional processes and emerging techniques. Topics covered include: Characterization and analysis of biofuels Process economics Chemistry of process conversion Process engineering and design and associated environmental technologies Energy balances and efficiencies Reactor designs and process configurations Energy materials and process equipment Integration with other conventional fossil fuel processes Byproduct utilization Governmental regulations and policies and global trends After an overview of the subject, the book discusses crop oils, biodiesel, and algae fuels. It examines ethanol from corn and from lignocelluloses and then explores fast pyrolysis and gasification of biomass. Discussing the future of biofuel production, it also describes the conversion of waste to biofuels, bioproducts, and bioenergy and concludes with a discussion of mixed feedstock. Written for readers with college-level backgrounds in chemistry, biology, physics, and engineering, this reference explores the science and technology involved in developing biofuels and bioenergy. It addresses the application of these and other disciplines, covering key issues of special interest to fuel process engineers, fuel scientists, and energy technologists, among others.
The literature on cavitation chemistry is ripe with conjectures, possibilities, heuris tic arguments, and intelligent guesses. The chemical effects of cavitation have been explained by means of many theories, consisting of empirical constants, adjustable parameters, and the like. The chemists working with cavitation chemistry agree that the phenomenon is very complex and system specific. Mathematicians and physi cists have offered partial solutions to the observed phenomena on the basis of cavitation parameters, whereas chemists have attempted explanations based on the modes of reaction and the detection of intermediate chemical species. Nevertheless, no one has been able to formulate a unified theme, however crude, for its effects on the basis of the known parameters, such as cavitation and transient chemistry involving extremely high temperatures of nanosecond durations. When one surveys the literature on cavitation-assisted reactions, it is clear that the approach so far has been "Edisonian" in nature. While a large number of reactions have showed either enhanced yields or reduced reaction times, many reactions have remained unaffected in the presence of cavitation. The success or failure of cavitation reactions ultimately depends on the collapse of the cavity. Cavitation chemistry is based on the principles of the formation of small transient cavities, their growth and implosion, which produce chemical reactions caused by the generation of extreme pressures and temperatures and a high degree of micro turbulence.
The finite difference method (FDM) hasbeen used tosolve differential equation systems for centuries. The FDM works well for problems of simple geometry and was widely used before the invention of the much more efficient, robust finite element method (FEM). FEM is now widely used in handling problems with complex geometry. Currently, we are using and developing even more powerful numerical techniques aiming to obtain more accurate approximate solutions in a more convenient manner for even more complex systems. The meshfree or meshless method is one such phenomenal development in the past decade, and is the subject of this book. There are many MFree methods proposed so far for different applications. Currently, three monographs on MFree methods have been published. Mesh Free Methods, Moving Beyond the Finite Element Method d by GR Liu (2002) provides a systematic discussion on basic theories, fundamentals for MFree methods, especially on MFree weak-form methods. It provides a comprehensive record of well-known MFree methods and the wide coverage of applications of MFree methods to problems of solids mechanics (solids, beams, plates, shells, etc.) as well as fluid mechanics. The Meshless Local Petrov-Galerkin (MLPG) Method d by Atluri and Shen (2002) provides detailed discussions of the meshfree local Petrov-Galerkin (MLPG) method and itsvariations. Formulations and applications of MLPG are well addressed in their book.
Since the study of wavelets is a relatively new area, much of the research coming from mathematicians, most of the literature uses terminology, concepts and proofs that may, at times, be difficult and intimidating for the engineer. Wavelet Basics has therefore been written as an introductory book for scientists and engineers. The mathematical presentation has been kept simple, the concepts being presented in elaborate detail in a terminology that engineers will find familiar. Difficult ideas are illustrated with examples which will also aid in the development of an intuitive insight. Chapter 1 reviews the basics of signal transformation and discusses the concepts of duals and frames. Chapter 2 introduces the wavelet transform, contrasts it with the short-time Fourier transform and clarifies the names of the different types of wavelet transforms. Chapter 3 links multiresolution analysis, orthonormal wavelets and the design of digital filters. Chapter 4 gives a tour d'horizon of topics of current interest: wavelet packets and discrete time wavelet transforms, and concludes with applications in signal processing.
Dynamic Stiffness and Substructures models a complex dynamic system and offers a solution to the advanced dynamical problem associated with the effects of wind and earthquakes on structures. Since the system matrices are inevitably frequency dependant, those are exclusively considered in this publication. The relation between the frequency matrices by the Leung's theorem is most important in the development of efficient algorithms for the natural modes. This new approach was developed by the author over the past 15 years. It offers practising engineers and researchers a wide choice for structural modelling and analysis. Abundant numerical examples enable the reader to understand the theorem and to apply the methods.
Technology has advanced to such a degree over the last decade that it has been almost impossible to find up-to-date coverage of antennas. Antenna Handbook, edited by two of the world's most distinguished antenna speciallists, presents the most advanced antenna theory and designs and demonstrates their application in a wide variety of technical fields. They offer a staggering amount of in-depth data and analysis on a wide range of topics, supported by formulas, curves, and results, as well as derivations.
Techniques based on the method of modal expansions, the Rayleigh-Stevenson expansion in inverse powers of the wavelength, and also the method of moments solution of integral equations are essentially restricted to the analysis of electromagnetic radiating structures which are small in terms of the wavelength. It therefore becomes necessary to employ approximations based on "high-frequency techniques" for performing an efficient analysis of electromagnetic radiating systems that are large in terms of the wavelength. One of the most versatile and useful high-frequency techniques is the geometrical theory of diffraction (GTD), which was developed around 1951 by J. B. Keller [1,2,3]. A class of diffracted rays are introduced systematically in the GTD via a generalization of the concepts of classical geometrical optics (GO). According to the GTD these diffracted rays exist in addition to the usual incident, reflected, and transmitted rays of GO. The diffracted rays in the GTD originate from certain "localized" regions on the surface of a radiating structure, such as at discontinuities in the geometrical and electrical properties of a surface, and at points of grazing incidence on a smooth convex surface as illustrated in Fig. 1. In particular, the diffracted rays can enter into the GO shadow as well as the lit regions. Consequently, the diffracted rays entirely account for the fields in the shadow region where the GO rays cannot exist.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.