This book analyzes hydrocarbon generation and accumulation within space-limited source rocks. The authors draw conclusions based on the principles of basin formation, hydrocarbon generation and accumulation, coupled with the practice of terrigenous basins in eastern China. Hydrocarbon generation and expulsion have been quantitatively assessed in space-limited source rock systems. This book explores new hydrocarbon generation and expulsion models to reflect real geological situations more accurately. The theory and practice proposed in this book challenge the traditional theory of kerogen thermal degradation and hydrocarbon generation.
The global environment is constantly changing and our planet is getting warmer at an unprecedented rate. The study of the carbon cycle, and soil respiration, is a very active area of research internationally because of its relationship to climate change. It is crucial for our understanding of ecosystem functions from plot levels to global scales. Although a great deal of literature on soil respiration has been accumulated in the past several years, the material has not yet been synthesized into one place until now. This book synthesizes the already published research findings and presents the fundamentals of this subject. Including information on global carbon cycling, climate changes, ecosystem productivity, crop production, and soil fertility, this book will be of interest to scientists, researchers, and students across many disciplines. - A key reference for the scientific community on global climate change, ecosystem studies, and soil ecology - Describes the myriad ways that soils respire and how this activity influences the environment - Covers a breadth of topics ranging from methodology to comparative analyses of different ecosystem types - The first existing "treatise" on the subject
This book investigates both theory and various applications of predictive learning control (PLC) which is an advanced technology for complex nonlinear systems. To avoid the difficult modeling problem for complex nonlinear systems, this book begins with the design and theoretical analysis of PLC method without using mechanism model information of the system, and then a series of PLC methods is designed that can cope with system constraints, varying trial lengths, unknown time delay, and available and unavailable system states sequentially. Applications of the PLC on both railway and urban road transportation systems are also studied. The book is intended for researchers, engineers, and graduate students who are interested in predictive control, learning control, intelligent transportation systems and related fields.
This book is filled with didactic elements such as exercises, charts and case study examples. It introduces a set of fundamental equations that govern the conservation of mass (dry air, water vapor, trace gases), momentum and energy in the lower atmosphere. It offers students an up-to-date literature overview and introduces theory to a field that is mostly empirical in nature. Dedicated to undergraduate or graduate students in atmospheric sciences and meteorology, this textbook compels students about the importance of the subject and its application. Simplifications of each of the equations are made in the context of boundary-layer processes. Extended from these equations the author then discusses a set of issues fundamental to boundary layer meteorology, including (1) turbulence generation and destruction, (2) force balance in various portions of the lower atmosphere, (3) canopy flow, (4) tracer diffusion and footprint theory, (5) principles of flux measurement and interpretation, (6) models for land evaporation, (7) models for surface temperature response to land use change, and (8) boundary layer budget calculations for heat, water vapor and carbon dioxide. This second edition is enhanced with new materials on the marine boundary layer and on three contemporary topics: the urban boundary layer, the polluted boundary layer and the cloudy boundary layer in a changing climate. Problem sets are supplied at the end of each chapter to reinforce the concepts and theory presented in the main text. This volume offers the accumulation of insights gained by the author during his academic career as a researcher and teacher in the field of boundary-layer meteorology
This book analyzes hydrocarbon generation and accumulation within space-limited source rocks. The authors draw conclusions based on the principles of basin formation, hydrocarbon generation and accumulation, coupled with the practice of terrigenous basins in eastern China. Hydrocarbon generation and expulsion have been quantitatively assessed in space-limited source rock systems. This book explores new hydrocarbon generation and expulsion models to reflect real geological situations more accurately. The theory and practice proposed in this book challenge the traditional theory of kerogen thermal degradation and hydrocarbon generation.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.