Antibiofouling Membranes for Water and Wastewater Treatment: Principles and Applications covers most recent advances, challenges, and industrial applications of antibiofouling membranes to help in reducing cost and increasing sustainability of long term-filtration performance of membranes in water and wastewater treatment. This book will provide a compact source of relevant and timely information on antibiofouling membranes and will be of great interest to scientists, engineers, industry R&D personnel, and graduate students engaged in the development, engineering scale-up, and applications of antibiofouling membranes, as well as other readers who are interested in microfiltration, membrane bioreactor, ultrafiltration, nanofiltration, reverse osmosis, and related topics. - Covers scientific and engineering principles of antibiofouling membranes for water and wastewater treatment - Unravels the structure-preparation-property-application relationship of antibiofouling membranes - Provides advanced design strategies of antibiofouling membrane materials - Summarizes and critically discusses antibiofouling membrane materials based on biocidal nanomaterials and quaternary ammonium compounds - Focuses on the state-of-the-art applications of antibiofouling membranes for water and wastewater treatment
This book focuses on the electromagnetic and thermal modeling and analysis of electrical machines, especially canned electrical machines for hydraulic pump applications. It addresses both the principles and engineering practice, with more weight placed on mathematical modeling and theoretical analysis. This is achieved by providing in-depth studies on a number of major topics such as: can shield effect analysis, machine geometry optimization, control analysis, thermal and electromagnetic network models, magneto motive force modeling, and spatial magnetic field modeling. For the can shield effect analysis, several cases are studied in detail, including classical canned induction machines, as well as state-of-the-art canned permanent magnet machines and switched reluctance machines. The comprehensive and systematic treatment of the can effect for canned electrical machines is one of the major features of this book, which is particularly suited for readers who are interested in learning about electrical machines, especially for hydraulic pumping, deep-sea exploration, mining and the nuclear power industry. The book offers a valuable resource for researchers, engineers, and graduate students in the fields of electrical machines, magnetic and thermal engineering, etc.
This SpringerBrief provides state-of-the-art technical reviews on self-organizing and optimization in 5G systems. It covers the latest research results from physical-layer channel modeling to software defined network (SDN) architecture. This book focuses on the cutting-edge wireless technologies such as heterogeneous networks (HetNets), self-organizing network (SON), smart low power node (LPN), 3D-MIMO, and more. It will help researchers from both the academic and industrial worlds to better understand the technical momentum of 5G key technologies.
Drawing on quantitative and qualitative data from teachers and students in Hong Kong’s secondary schools, this book examines critical questions in relation to language learning motivation and instructional contexts. Readers are provided with a critical overview of developments in theory and research on language learning motivation and the potential to further extend these developments. Grounded in the Douglas Fir Group conceptualization of language learning, the book explores the complex interplay of diverse factors that shape learners’ motivation. It offers a unique window into the situated nature of language learning motivation in the macro, meso, and micro contexts of a Chinese heritage society. In so doing, it brings the Chinese voice into the theorization of this important language learning construct. Potential future research avenues are suggested, and implications for policy and practice are discussed. This book will be a useful resource for academics and postgraduates interested in the fields of English as a second language (ESL), English language teaching, language teaching and learning.
This book presents novel research ideas and offers insights into radar system design, artificial intelligence and signal processing applications. Further, it proposes a new concept of antenna spatial polarization characteristics (SPC), suggesting that the antenna polarization is a function of the spatial direction and providing new ideas for radar signal processing (RSP) and anti-jamming. It also discusses the design of an advanced signal-processing algorithm, and proposes new polarimetric and anti-jamming methods using antenna inherent properties. The book helps readers discover the potential of radar information processing and improve its anti-interference and target identification ability. It is of interest to university researchers, radar engineers and graduate students in computer science and electronics who wish to learn the core principles, methods, algorithms, and applications of RSP.
This monograph reports on a longitudinal inquiry into mainland Chinese undergraduates' language learning experiences at an English medium university in a multilingual setting with a focus on their strategic language learning efforts. This book examines the issue as to what extent language learners' strategic learning efforts depend on their 'choice', if 'the element of choice' is the defining characteristic of language learners' strategic learning behavior. The inquiry, using a qualitative and ethnographic research approach, reveals dynamic interaction between learners' agency and contextual conditions underlying the participants' strategic learning process. Such understanding informs pedagogical efforts to foster individual learners' capacity for strategic learning and their capacities in opening up and sustaining a social learning space for exercising their strategic learning capacity or utilizing their strategic learning knowledge." --Book Jacket.
Recent advances in science and technology such as online monitoring techniques, coupling of various processing methods, surface characterization and measurement techniques have greatly promoted the development of ultraprecise machining technology. This precision now falls into the micrometer and nanometer range - hence the name micro & nanomachining technology (MNT). Machining is a complex phenomenon associated with a variety of different mechanical, physical, and chemical processes. Common principles defining control mechanisms such as O Jamie de geometry, Newton mechanics, Macroscopic Thermodynamics and Electromagnetics are not applicable to phenomena occurring at the nanometer scale whereas quantum effects, wave characteristics and the microscopic fluctuation become the dominant factors. A remarkable enhancement in computational capability through advanced computer hardware and high performance computation techniques (parallel computation) has enabled researchers to employ large scale parallel numerical simulations to investigate micro & nanomachining technologies and gain insights into related processes. Micro and Nanomachining Technology - Size, Model and Complex Mechanism introduces readers to the basics of micro & nanomachining (MNT) technology and covers some of the above techniques including molecular dynamics and finite element simulations, as well as complexity property and multiscale MNT methods. This book meets the growing need of Masters students or Ph.D. students studying nanotechnology, mechanical engineering or materials engineering, allowing them to understand the design and process issues associated with precision machine tools and the fabrication of precision components.
A practical and systematic elaboration on the analysis, design and control of grid integrated and standalone distributed photovoltaic (PV) generation systems, with Matlab and Simulink models Analyses control of distribution networks with high penetration of PV systems and standalone microgrids with PV systems Covers in detail PV accommodation techniques including energy storage, demand side management and PV output power regulation Features examples of real projects/systems given in OPENDSS codes and/or Matlab and Simulink models Provides a concise summary of up-to-date research around the word in distributed PV systems
A practical and systematic elaboration on the analysis, design and control of grid integrated and standalone distributed photovoltaic (PV) generation systems, with Matlab and Simulink models Analyses control of distribution networks with high penetration of PV systems and standalone microgrids with PV systems Covers in detail PV accommodation techniques including energy storage, demand side management and PV output power regulation Features examples of real projects/systems given in OPENDSS codes and/or Matlab and Simulink models Provides a concise summary of up-to-date research around the word in distributed PV systems
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.