The book systematically introduces the design theory and method of multi-band RF filtering circuits for the modern wireless communication systems or radar systems, which are required to operate at multi-bands. These multi-band filtering RF circuits have drawn more and more attention from the engineers and scientists in the field of RF circuits design. The book proposes the detailed theoretical analysis and abundant experimental data of multi-mode resonators, multi-band bandpass filter with high selectivity, reflectionless multi-band bandpass filter, balanced filter with high suppression, slotline based multi-band balun filter, switchable filtering diplexer based on reused L-shape resonator and miniaturized 55-/95-GHz on-chip dual-band bandpass Filter. The book is intended for undergraduate and graduate students who are interested in filtering circuits design, researchers who are investigating RF & microwave systems, as well as design engineers who are working in the RF & microwave circuits field. Readers can get an in-depth understanding about the multi-band RF filtering circuits design theory and method.
BATTERY MANAGEMENT SYSTEM AND ITS APPLICATIONS Enables readers to understand basic concepts, design, and implementation of battery management systems Battery Management System and its Applications is an all-in-one guide to basic concepts, design, and applications of battery management systems (BMS), featuring industrially relevant case studies with detailed analysis, and providing clear, concise descriptions of performance testing, battery modeling, functions, and topologies of BMS. In Battery Management System and its Applications, readers can expect to find information on: Core and basic concepts of BMS, to help readers establish a foundation of relevant knowledge before more advanced concepts are introduced Performance testing and battery modeling, to help readers fully understand Lithium-ion batteries Basic functions and topologies of BMS, with the aim of guiding readers to design simple BMS themselves Some advanced functions of BMS, drawing from the research achievements of the authors, who have significant experience in cross-industry research Featuring detailed case studies and industrial applications, Battery Management System and its Applications is a must-have resource for researchers and professionals working in energy technologies and power electronics, along with advanced undergraduate/postgraduate students majoring in vehicle engineering, power electronics, and automatic control.
This Brief introduces the wireless spectrum market and discusses the current research for spectrum auctions. It covers the unique properties of spectrum auction, such as interference relationship, reusability, divisibility, composite effect and marginal effect, while also proposing how to build economic incentives into the network architecture and protocols in order to optimize the efficiency of wireless systems. Three scenarios for designing new auctions are demonstrated. First, a truthful double auction scheme for spectrum trading considering both the heterogeneous propagation properties of channels and spatial reuse is proposed. In the second scenario, a framework is designed to enable spectrum group secondary users with a limited budget. Finally, a flexible auction is created enabling operators to purchase the right amounts of spectrum at the right prices according to their users’ dynamic demands. Both concise and comprehensive, Auction Design for the Wireless Spectrum Market is suited for professionals and researchers working with wireless communications and networks. It is also a useful tool for advanced-level students interested in spectrum and networking issues.
A virtual sound barrier is an active noise control system that uses arrays of loudspeakers and microphones to create a useful size of quiet zone and can be used to reduce sound propagation, radiation, or transmission from noise sources or to reduce noise level around people in a noisy environment. This book introduces the history, principle, and design methods of virtual sound barriers first, and then describes recent progress in research on the systems. Two virtual sound barrier systems, i.e., planar virtual sound barrier system and three-dimensional virtual sound barrier system, are discussed including applications, limitations and future direction discussions.
This book sheds light on state-of-the-art theories for more challenging outfit compatibility modeling scenarios. In particular, this book presents several cutting-edge graph learning techniques that can be used for outfit compatibility modeling. Due to its remarkable economic value, fashion compatibility modeling has gained increasing research attention in recent years. Although great efforts have been dedicated to this research area, previous studies mainly focused on fashion compatibility modeling for outfits that only involved two items and overlooked the fact that each outfit may be composed of a variable number of items. This book develops a series of graph-learning based outfit compatibility modeling schemes, all of which have been proven to be effective over several public real-world datasets. This systematic approach benefits readers by introducing the techniques for compatibility modeling of outfits that involve a variable number of composing items. To deal with the challenging task of outfit compatibility modeling, this book provides comprehensive solutions, including correlation-oriented graph learning, modality-oriented graph learning, unsupervised disentangled graph learning, partially supervised disentangled graph learning, and metapath-guided heterogeneous graph learning. Moreover, this book sheds light on research frontiers that can inspire future research directions for scientists and researchers.
Polarization Measurement and Control in Optical Fiber Communication and Sensor Systems A practical handbook covering polarization measurement and control in optical communication and sensor systems In Polarization Measurement and Control in Optical Fiber Communication and Sensor Systems, the authors deliver a comprehensive exploration of polarization related phenomena, as well as the methodologies, techniques, and devices used to eliminate, mitigate, or compensate for polarization related problems and impairments. The book also discusses polarization-related parameter measurement and characterization technologies in optical fibers and fiber optic devices and the utilization of polarization to solve problems or enable new capabilities in communications, sensing, and measurement systems. The authors provide a practical and hands-on treatment of the information that engineers, scientists, and graduate students must grasp to be successful in their everyday work. In addition to coverage of topics ranging from the use of polarization analysis to obtain instantaneous spectral information on light sources to the design of novel fiber optic gyroscopes for rotation sensing, Polarization Measurement and Control in Optical Fiber Communication and Sensor Systems offers: A thorough introduction to polarization in optical fiber studies, including a history of polarization in optical fiber communication and sensor systems Comprehensive discussions of the fundamentals of polarization, including the effects unique to optical fiber systems, as well as extensive coverage Jones and Mueller matrix calculus for polarization analysis In-depth treatments of active polarization controlling devices for optical fiber systems, including polarization controllers, scramblers, emulators, switches, and binary polarization state generators Fulsome explorations of passive polarization management devices, including polarizers, polarization beam splitters/displacers, wave-plates, Faraday rotators, and depolarizers Extensive review of polarization measurement techniques and devices, including time-division, amplitude-division, and wave-front division Stokes polarimeters, as well as various Mueller matrix polarimeters for PMD, PDL, and birefringence measurements Premiere of binary polarization state analyzers and binary Mueller matrix polarimeters pioneered by the authors, including their applications for highly sensitive PMD, PDL, and birefringence measurements Comprehensive discussion on distributed polarization analysis techniques developed by the authors, including their applications in solving real world problems Detailed descriptions of high accuracy polarimetric fiber optic electric current and magnetic field sensors Perfect for professional engineers, scientists, and graduate students studying fiber optics, Polarization Measurement and Control in Optical Fiber Communication and Sensor Systems enables one to quickly grasp extensive knowledge and latest development of polarization in optical fibers and will earn a place in the libraries of professors and teachers of photonics and related disciplines.
Parametric array loudspeakers (PALs) are capable of generating highly directional audio beams from nonlinear interactions of intense airborne ultrasound waves. This unique capability holds great potential in audio engineering. This book systematically introduces the physical principles of acoustics waves generated by PALs, along with the commonly used and the state-of-the-art numerical models, such as the Westervelt model, the convolution directivity model, the Gaussian beam expansion method, and the spherical wave expansion method. The properties of sound fields generated by PALs are analyzed. Also analyzed are various phenomena including the reflection of acoustics waves generated by PALs from a surface, transmission through a thin partition, scattering by a rigid sphere, and propagation in rooms. Furthermore, the steering and focusing of acoustics waves generated by PALs and potential applications of PALs in active sound control are investigated. Finally, the implementation issues of hardware, signal processing techniques, measurement, and safety are discussed. The book is tailored to meet the needs of researchers in this field, as well as audio practitioners and acoustics engineers.
Integrating active control of both sound and vibration, this comprehensive two-volume set combines coverage of fundamental principles with the most recent theoretical and practical developments. The authors explain how to design and implement successful active control systems in practice and detail the pitfalls one must avoid to ensure a reliable and stable system. Extensively revised, updated, and expanded throughout, the second edition reflects the advances that have been made in algorithms, DSP hardware, and applications since the publication of the first edition.
This Springerbreif introduces a threshold-based channel sparsification approach, and then, the sparsity is exploited for scalable channel training. Last but not least, this brief introduces two scalable cooperative signal detection algorithms in C-RANs. The authors wish to spur new research activities in the following important question: how to leverage the revolutionary architecture of C-RAN to attain unprecedented system capacity at an affordable cost and complexity. Cloud radio access network (C-RAN) is a novel mobile network architecture that has a lot of significance in future wireless networks like 5G. the high density of remote radio heads in C-RANs leads to severe scalability issues in terms of computational and implementation complexities. This Springerbrief undertakes a comprehensive study on scalable signal processing for C-RANs, where ‘scalable’ means that the computational and implementation complexities do not grow rapidly with the network size. This Springerbrief will be target researchers and professionals working in the Cloud Radio Access Network (C-Ran) field, as well as advanced-level students studying electrical engineering.
This book takes a comprehensive study on turbo message passing algorithms for structured signal recovery, where the considered structured signals include 1) a sparse vector/matrix (which corresponds to the compressed sensing (CS) problem), 2) a low-rank matrix (which corresponds to the affine rank minimization (ARM) problem), 3) a mixture of a sparse matrix and a low-rank matrix (which corresponds to the robust principal component analysis (RPCA) problem). The book is divided into three parts. First, the authors introduce a turbo message passing algorithm termed denoising-based Turbo-CS (D-Turbo-CS). Second, the authors introduce a turbo message passing (TMP) algorithm for solving the ARM problem. Third, the authors introduce a TMP algorithm for solving the RPCA problem which aims to recover a low-rank matrix and a sparse matrix from their compressed mixture. With this book, we wish to spur new researches on applying message passing to various inference problems. Provides an in depth look into turbo message passing algorithms for structured signal recovery Includes efficient iterative algorithmic solutions for inference, optimization, and satisfaction problems through message passing Shows applications in areas such as wireless communications and computer vision
The first book applying HBFEM to practical electronic nonlinear field and circuit problems • Examines and solves wide aspects of practical electrical and electronic nonlinear field and circuit problems presented by HBFEM • Combines the latest research work with essential background knowledge, providing an all-encompassing reference for researchers, power engineers and students of applied electromagnetics analysis • There are very few books dealing with the solution of nonlinear electric- power-related problems • The contents are based on the authors’ many years’ research and industry experience; they approach the subject in a well-designed and logical way • It is expected that HBFEM will become a more useful and practical technique over the next 5 years due to the HVDC power system, renewable energy system and Smart Grid, HF magnetic used in DC/DC converter, and Multi-pulse transformer for HVDC power supply • HBFEM can provide effective and economic solutions to R&D product development • Includes Matlab exercises
This book focuses on the model and algorithm aspects of securing Unmanned Aerial Vehicle Networks (UAV). To equip readers with the essential knowledge required for conducting research in this field, it covers the foundational concepts of this topic as well. This book also offers a detailed insight into UAV networks from the physical layer security point of view. The authors discuss the appropriate channel models for characterizing various propagation environments that UAV networks are exposed. The state-of-the-art technologies, such as UAV trajectory design, cooperative jamming and reconfigurable intelligent surfaces are covered. The corresponding algorithms for significantly improving the security of UAV networks, along with practical case studies on topics such as energy-efficient and secure UAV networks, elevation angle-distance trade-off for securing UAV networks and securing UAV networks with the aid of reconfigurable intelligent surfaces are presented as well. Last, this book outlines the future challenges and research directions to facilitate further studies on secure UAV networks. This book is suitable reading for graduate students and researchers who are interested in the research areas of UAV networking and communications, IoT security, and physical layer security in wireless networks. Professionals working within these related fields will also benefit from this book.
This book discusses the theories, methods, and application techniques of the measurement data mathematical modeling and parameter estimation. It seeks to build a bridge between mathematical theory and engineering practice in the measurement data processing field so theoretical researchers and technical engineers can communicate. It is organized with abundant materials, such as illustrations, tables, examples, and exercises. The authors create examples to apply mathematical theory innovatively to measurement and control engineering. Not only does this reference provide theoretical knowledge, it provides information on first hand experiences.
Risk management is often complicated by situational uncertainties and the subjective preferences of decision makers. Fuzzy Hierarchical Model for Risk Assessment introduces a fuzzy-based hierarchical approach to solve risk management problems considering both qualitative and quantitative criteria to tackle imprecise information. This approach is illustrated through number of case studies using examples from the food, fashion and electronics sectors to cover a range of applications including supply chain management, green product design and green initiatives. These practical examples explore how this method can be adapted and fine tuned to fit other industries as well. Supported by an extensive literature review, Fuzzy Hierarchical Model for Risk Assessment comprehensively introduces a new method for project managers across all industries as well as researchers in risk management. this area.
By making use of the principles of systems science, the scientific community can explain many complicated matters of the world and shed new light on unsettled problems. Each real science has its own particular methodology for not only qualitative but also quantitative analyses, so it is important to understand the organic whole of systems research
Written by award-winning engineers whose research has been sponsored by the U.S. National Science Foundation (NSF), IBM, and Cisco's University Research Program, Wireless Sensor Networks: Principles and Practice addresses everything product developers and technicians need to know to navigate the field. It provides an all-inclusive examina
The last decade has seen an unprecedented growth in the demand for wireless services. These services are fueled by applications that often require not only high data rates, but also very low latency to function as desired. However, as wireless networks grow and support increasingly large numbers of users, these control algorithms must also incur only low complexity in order to be implemented in practice. Therefore, there is a pressing need to develop wireless control algorithms that can achieve both high throughput and low delay, but with low-complexity operations. While these three performance metrics, i.e., throughput, delay, and complexity, are widely acknowledged as being among the most important for modern wireless networks, existing approaches often have had to sacrifice a subset of them in order to optimize the others, leading to wireless resource allocation algorithms that either suffer poor performance or are difficult to implement. In contrast, the recent results presented in this book demonstrate that, by cleverly taking advantage of multiple physical or virtual channels, one can develop new low-complexity algorithms that attain both provably high throughput and provably low delay. The book covers both the intra-cell and network-wide settings. In each case, after the pitfalls of existing approaches are examined, new systematic methodologies are provided to develop algorithms that perform provably well in all three dimensions.
The book systematically introduces the design theory and method of multi-band RF filtering circuits for the modern wireless communication systems or radar systems, which are required to operate at multi-bands. These multi-band filtering RF circuits have drawn more and more attention from the engineers and scientists in the field of RF circuits design. The book proposes the detailed theoretical analysis and abundant experimental data of multi-mode resonators, multi-band bandpass filter with high selectivity, reflectionless multi-band bandpass filter, balanced filter with high suppression, slotline based multi-band balun filter, switchable filtering diplexer based on reused L-shape resonator and miniaturized 55-/95-GHz on-chip dual-band bandpass Filter. The book is intended for undergraduate and graduate students who are interested in filtering circuits design, researchers who are investigating RF & microwave systems, as well as design engineers who are working in the RF & microwave circuits field. Readers can get an in-depth understanding about the multi-band RF filtering circuits design theory and method.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.