The Space Station Freedom program is the next major U.S. manned space initiative. It has as its objective the establishment of a permanently manned facility in low earth orbit. This book summarizes the main findings and recommendations of a workshop that examined the space station program with a view toward identifying critical engineering issues related to the design and operation of the station.
The Space Station Freedom program is the next major U.S. manned space initiative. It has as its objective the establishment of a permanently manned facility in low earth orbit. This book summarizes the main findings and recommendations of a workshop that examined the space station program with a view toward identifying critical engineering issues related to the design and operation of the station.
The adverse effects of extreme space weather on modern technology-power grid outages, high-frequency communication blackouts, spacecraft anomalies-are well known and well documented, and the physical processes underlying space weather are also generally well understood. Less well documented and understood, however, are the potential economic and societal impacts of the disruption of critical technological systems by severe space weather. As a first step toward determining the socioeconomic impacts of extreme space weather events and addressing the questions of space weather risk assessment and management, a public workshop was held in May 2008. The workshop brought together representatives of industry, the government, and academia to consider both direct and collateral effects of severe space weather events, the current state of the space weather services infrastructure in the United States, the needs of users of space weather data and services, and the ramifications of future technological developments for contemporary society's vulnerability to space weather. The workshop concluded with a discussion of un- or underexplored topics that would yield the greatest benefits in space weather risk management.
Although the U.S. aeronautics industry has been one of the undisputed success stories in global competitiveness throughout the latter half of this century and is currently one of the largest positive industrial contributors to the U.S. balance of trade, long-term strategic planning is necessary to ensure that the United States retains a strong and competitive aeronautics industry in the future. Recognizing that a long-term strategic plan for aeronautics requires a broad-based national perspective that includes the needs of users and consumers, the National Research Council conducted a workshop that would bring together experts from industry, government, and academia to analyze a number of possible scenarios for aeronautics 15 to 25 years hence. The results of the workshop, which are discussed in this book, focus on potential needs and opportunities for aviation and aeronautics in the future and their implications for several broad areas of technology development. These areas include new types of aircraft, improved system integration in aircraft design manufacturing and operations, passenger and crew safety and security, operating efficiency and cost effectiveness, environmental compliance and noise abatement, and access to space.
This book synthesizes the findings of three workshops on research issues in high-performance computing and communications (HPCC). It focuses on the role that computing and communications can play in supporting federal, state, and local emergency management officials who deal with natural and man-made hazards (e.g., toxic spills, terrorist bombings). The volume also identifies specific research challenges for HPCC in meeting unmet technology needs in crisis management and other nationally important application areas, such as manufacturing, health care, digital libraries, and electronic commerce and banking.
This book synthesizes the findings of three workshops on research issues in high-performance computing and communications (HPCC). It focuses on the role that computing and communications can play in supporting federal, state, and local emergency management officials who deal with natural and man-made hazards (e.g., toxic spills, terrorist bombings). The volume also identifies specific research challenges for HPCC in meeting unmet technology needs in crisis management and other nationally important application areas, such as manufacturing, health care, digital libraries, and electronic commerce and banking.
On November 29-30, 2018, in Washington, D.C., the National Academies of Sciences, Engineering, and Medicine held the Workshop on the Continuous Improvement of NASA's Innovation Ecosystem. The workshop was requested by the National Aeronautics and Space Administration (NASA) Office of the Chief Technologist with the goal of identifying actionable and implementable initiatives that could build on NASA's current innovation culture to reach a future state that will ensure the agency's continued success in the evolving aerospace environment. This publication summarizes the presentations and discussions from the workshop.
Fulfilling the President's Vision for Space Exploration (VSE) will require overcoming many challenges. Among these are the hazards of space radiation to crews traveling to the Moon and Mars. To explore these challenges in some depth and to examine ways to marshal research efforts to address them, NASA, NSF, and the NRC sponsored a workshop bringing together members of the space and planetary science, radiation physics, operations, and exploration engineering communities. The goals of the workshop were to increase understanding of the solar and space physics in the environment of Earth, the Moon, and Mars; to identify compelling relevant research goals; and discuss directions this research should take over the coming decade. This workshop report presents a discussion of radiation risks for the VSE, an assessment of specifying and predicting the space radiation environment, an analysis of operational strategies for space weather support, and a summary and conclusions of the workshop.
On November 29-30, 2018, in Washington, D.C., the National Academies of Sciences, Engineering, and Medicine held the Workshop on the Continuous Improvement of NASA's Innovation Ecosystem. The workshop was requested by the National Aeronautics and Space Administration (NASA) Office of the Chief Technologist with the goal of identifying actionable and implementable initiatives that could build on NASA's current innovation culture to reach a future state that will ensure the agency's continued success in the evolving aerospace environment. This publication summarizes the presentations and discussions from the workshop"--Publisher's description
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.