Engineering systems have played a crucial role in stimulating many of the modern developments in nonlinear and stochastic dynamics. After 20 years of rapid progress in these areas, this book provides an overview of the current state of nonlinear modeling and analysis for mechanical and structural systems. This volume is a coherent compendium written by leading experts from the United States, Canada, Western and Eastern Europe, and Australia. The 22 articles describe the background, recent developments, applications, and future directions in bifurcation theory, chaos, perturbation methods, stochastic stability, stochastic flows, random vibrations, reliability, disordered systems, earthquake engineering, and numerics. The book gives readers a sophisticated toolbox that will allow them to tackle modeling problems in mechanical systems that use stochastic and nonlinear dynamics ideas. An extensive bibliography and index ensure this volume will remain a reference standard for years to come.
This new text/reference is an excellent resource for the foundations and applications of control theory and nonlinear dynamics. All graduates, practitioners, and professionals in control theory, dynamical systems, perturbation theory, engineering, physics and nonlinear dynamics will find the book a rich source of ideas, methods and applications. With its careful use of examples and detailed development, it is suitable for use as a self-study/reference guide for all scientists and engineers.
This book provides an introduction to the interplay between linear algebra and dynamical systems in continuous time and in discrete time. It first reviews the autonomous case for one matrix A via induced dynamical systems in ℝd and on Grassmannian manifolds. Then the main nonautonomous approaches are presented for which the time dependency of A(t) is given via skew-product flows using periodicity, or topological (chain recurrence) or ergodic properties (invariant measures). The authors develop generalizations of (real parts of) eigenvalues and eigenspaces as a starting point for a linear algebra for classes of time-varying linear systems, namely periodic, random, and perturbed (or controlled) systems. The book presents for the first time in one volume a unified approach via Lyapunov exponents to detailed proofs of Floquet theory, of the properties of the Morse spectrum, and of the multiplicative ergodic theorem for products of random matrices. The main tools, chain recurrence and Morse decompositions, as well as classical ergodic theory are introduced in a way that makes the entire material accessible for beginning graduate students.
Establishing a new concept of local Lyapunov exponents the author brings together two separate theories, namely Lyapunov exponents and the theory of large deviations. Specifically, a linear differential system is considered which is controlled by a stochastic process that during a suitable noise-intensity-dependent time is trapped near one of its so-called metastable states. The local Lyapunov exponent is then introduced as the exponential growth rate of the linear system on this time scale. Unlike classical Lyapunov exponents, which involve a limit as time increases to infinity in a fixed system, here the system itself changes as the noise intensity converges, too.
This volume is based on lectures given at the workshop on pseudo-differential operators held at the Fields Institute from December 11, 2006 to December 15, 2006. The two main themes of the workshop and hence this volume are partial differential equations and time-frequency analysis. The contents of this volume consist of five mini-courses for graduate students and post-docs, and fifteen papers on related topics. Of particular interest in this volume are the mathematical underpinnings, applications and ramifications of the relatively new Stockwell transform, which is a hybrid of the Gabor transform and the wavelet transform. The twenty papers in this volume reflect modern trends in the development of pseudo-differential operators.
This book constitutes the refereed proceedings of the 24th Annual Symposium on Theoretical Aspects of Computer Science, STACS 2007, held in Aachen, Germany in February 2007. The 56 revised full papers presented together with 3 invited papers were carefully reviewed and selected from about 400 submissions. The papers address the whole range of theoretical computer science including algorithms and data structures, automata and formal languages, complexity theory, logic in computer science, semantics, specification, and verification of programs, rewriting and deduction, as well as current challenges like biological computing, quantum computing, and mobile and net computing.
This is the new edition of a two-volume directory that documents the entire European music industry. Entries include contact information, as well as descriptions of the organizations and the types of music involved, when available and/or applicable. The first volume discusses orchestras (from symphonies to chamber orchestras and brass bands), choirs, European music theaters, competitions and prizes, concert management and promotion agencies, radio and television, information on associations and foundations, teaching and instruction, and music libraries and archives, museums, and research and university institutes. The second volume covers all areas of the music industry and trade, i.e. instrument making, music and computers, music trade and sales, trade fairs for music, antiquarians and auction houses, sound studios and record companies, music publishers, and sound, lighting and scenery. It also contains the indexes of institutions and firms, persons, and instruments. Distributed by Gale. Annotation copyrighted by Book News, Inc., Portland, OR
This book provides an introduction to the interplay between linear algebra and dynamical systems in continuous time and in discrete time. It first reviews the autonomous case for one matrix A via induced dynamical systems in ℝd and on Grassmannian manifolds. Then the main nonautonomous approaches are presented for which the time dependency of A(t) is given via skew-product flows using periodicity, or topological (chain recurrence) or ergodic properties (invariant measures). The authors develop generalizations of (real parts of) eigenvalues and eigenspaces as a starting point for a linear algebra for classes of time-varying linear systems, namely periodic, random, and perturbed (or controlled) systems. The book presents for the first time in one volume a unified approach via Lyapunov exponents to detailed proofs of Floquet theory, of the properties of the Morse spectrum, and of the multiplicative ergodic theorem for products of random matrices. The main tools, chain recurrence and Morse decompositions, as well as classical ergodic theory are introduced in a way that makes the entire material accessible for beginning graduate students.
This new text/reference is an excellent resource for the foundations and applications of control theory and nonlinear dynamics. All graduates, practitioners, and professionals in control theory, dynamical systems, perturbation theory, engineering, physics and nonlinear dynamics will find the book a rich source of ideas, methods and applications. With its careful use of examples and detailed development, it is suitable for use as a self-study/reference guide for all scientists and engineers.
This volume contains the proceedings of the International Symposium on Nonlinear Dynamics and Stochastic Mechanics held at the Fields Institute for Research in Mathematical Sciences from August - September (1993), as part of the 1992-93 Program Year on Dynamical Systems and Bifurcation Theory. In recent years, mathematicians and applied scientists have made significant progress in understanding and have developed powerful tools for the analysis of the complex behaviour of deterministic and stochastic dynamical systems. By moving beyond classical perturbation methods to more general geometrical, computational, and analytical methods, this book is at the forefront in transferring these new mathematical ideas into engineering practice. This work presents the solutions of some specific problems in engineering structures and mechanics and demonstrates by explicit example these new methods of solution.
Engineering systems have played a crucial role in stimulating many of the modern developments in nonlinear and stochastic dynamics. After 20 years of rapid progress in these areas, this book provides an overview of the current state of nonlinear modeling and analysis for mechanical and structural systems. This volume is a coherent compendium written by leading experts from the United States, Canada, Western and Eastern Europe, and Australia. The 22 articles describe the background, recent developments, applications, and future directions in bifurcation theory, chaos, perturbation methods, stochastic stability, stochastic flows, random vibrations, reliability, disordered systems, earthquake engineering, and numerics. The book gives readers a sophisticated toolbox that will allow them to tackle modeling problems in mechanical systems that use stochastic and nonlinear dynamics ideas. An extensive bibliography and index ensure this volume will remain a reference standard for years to come.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.