This book provides essential information on the higher mathematical level of approximation over the gradually varied flow theory, also referred to as the Boussinesq-type theory. In this context, it presents higher order flow equations, together with their applications in a broad range of pertinent engineering and environmental problems, including open channel, groundwater, and granular material flows.
The second, enlarged edition of this established reference integrates many new insights into wastewater hydraulics. This work serves as a reference for researchers but also is a basis for practicing engineers. It can be used as a text book for graduate students, although it has the characteristics of a reference book. It addresses mainly the sewer hydraulician but also general hydraulic engineers who have to tackle many a problem in daily life, and who will not always find an appropriate solution. Each chapter is introduced with a summary to outline the contents. To illustrate application of the theory, examples are presented to explain the computational procedures. Further, to relate present knowledge to the history of hydraulics, some key dates on noteworthy hydraulicians are quoted. A historical note on the development of wastewater hydraulics is also added. References are given at the end of each chapter, and they are often helpful starting points for further reading. Each notation is defined when introduced, and listed alphabetically at the end of each chapter. This new edition includes in particular sideweirs with throttling pipes, drop shafts with an account on the two-phase flow features, as well as conduit choking due to direct or undular hydraulic jumps.
This book presents the theory and computation of open channel flows, using detailed analytical, numerical and experimental results. The fundamental equations of open channel flows are derived by means of a rigorous vertical integration of the RANS equations for turbulent flow. In turn, the hydrostatic pressure hypothesis, which forms the core of many shallow water hydraulic models, is scrutinized by analyzing its underlying assumptions. The book’s main focus is on one-dimensional models, including detailed treatments of unsteady and steady flows. The use of modern shock capturing finite difference and finite volume methods is described in detail, and the quality of solutions is carefully assessed on the basis of analytical and experimental results. The book’s unique features include: • Rigorous derivation of the hydrostatic-based shallow water hydraulic models • Detailed treatment of steady open channel flows, including the computation of transcritical flow profiles • General analysis of gate maneuvers as the solution of a Riemann problem • Presents modern shock capturing finite volume methods for the computation of unsteady free surface flows • Introduces readers to movable bed and sediment transport in shallow water models • Includes numerical solutions of shallow water hydraulic models for non-hydrostatic steady and unsteady free surface flows This book is suitable for both undergraduate and graduate level students, given that the theory and numerical methods are progressively introduced starting with the basics. As supporting material, a collection of source codes written in Visual Basic and inserted as macros in Microsoft Excel® is available. The theory is implemented step-by-step in the codes, and the resulting programs are used throughout the book to produce the respective solutions.
Hydraulic engineering of dams and their appurtenant structures counts among the essential tasks to successfully design safe water-retaining reservoirs for hydroelectric power generation, flood retention, and irrigation and water supply demands. In view of climate change, especially dams and reservoirs, among other water infrastructure, will and have to play an even more important role than in the past as part of necessary mitigation and adaptation measures to satisfy vital needs in water supply, renewable energy and food worldwide as expressed in the Sustainable Development Goals of the United Nations. This book deals with the major hydraulic aspects of dam engineering considering recent developments in research and construction, namely overflow, conveyance and dissipations structures of spillways, river diversion facilities during construction, bottom and low-level outlets as well as intake structures. Furthermore, the book covers reservoir sedimentation, impulse waves and dambreak waves, which are relevant topics in view of sustainable and safe operation of reservoirs. The book is richly illustrated with photographs, highlighting the various appurtenant structures of dams addressed in the book chapters, as well as figures and diagrams showing important relations among the governing parameters of a certain phenomenon. An extensive literature review along with an updated bibliography complete this book.
Stilling basins utili z ing a hydraulic jump for energy dissipation are w i d e l y used in hydraulic engineering . D a Vinci was the first to describe the hydraulic jump, and Bidone conducted classical experiments about 170 years ago . Stilling basins w e r e developed in the thirties with signif- cant design improvements being made during the last sixty years . Although w e l l - a c c e p t e d guidelines for a successful design are presently available, the information for the design of such dissipators is not yet compiled in book form . This book provides state-of-the-art information on hydraulic jumps and associat ed stilling basins . A large numbe r of papers on the to pics are reviewed. T h e present trends of the art of designing a stilli ng basin are discussed and ideas for future research are outlined. Design criteria and recommendat ions are frequently given . However, this should not be considered as a r eady-to -use guideline since the design of an effective stilling basin is much more comple x than following general design steps . The book is divided into two parts. Part 1 on hydraulic jumps is c- prised of chapters 2 to 5. Part 2 consisting of chapters 6 to 14 deals with various hydraulic structures used to dissipate energy. The lists of notation and references are provided in each part separately although the same notation is u sed throughout.
This book provides 1-page short biographies of scientists and engineers having worked in the areas of hydraulic engineering and fluid dynamics in the USA. On each page, a notable individual is highlighted by: (1) Exact dates and locations of birth and death; (2) Educational and professional details, including also awards received; (3) Rea
This book provides 1-page short biographies of scientists and engineers working in the area of hydraulic engineering and fluid dynamics in the USA. On each page, a notable individual is highlighted by: (1) Exact dates and locations of birth and death; (2) Educational and professional details, including also awards received; (3) Reasons for inclusion in the book by highlighting key publications; (4) Short bibliography including both individual’s own, and source literature such as Who’s Who details, or origination details of the portrait; (5) In most cases, an illustrative portrait or photo showing, for example, a book cover of the individual, or photograph of a typical work such as a dam or a canal. This volume includes almost 1,000 individuals, of which there are only 2 women. The book also provides a detailed Index, and a 2-page list of individuals (normally born in Europe) listed in previous volumes (1 and 2), but having a relation to this volume 3. The book also contains a map of the USA highlighting the major American rivers, with a close relation to projects carried out by several of the individuals presented in the book. This book provides a beautiful overview of the many scientists and engineers having contributed to the current knowledge in hydraulic engineering and fluid mechanics. The author made every effort in compiling the most important hydraulicians of the USA in this work as it will become much more difficult in future decades to find biographical details on these, given the current policy that so few memoirs or necrologues are published.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.