Over the past decade, microseismic monitoring, a technology developed for evaluating completions of wells drilled to produce hydrocarbons from unconventional reservoirs, has grown increasingly popular among oil and gas companies. Microseismic Monitoring, by Vladimir Grechka and Werner M. Heigl, discusses how to process microseismic data, what can and cannot be inferred from such data, and to what level of certainty this might be possible. The narrative of the book follows the passage of seismic waves: from a source triggered by hydraulic fracture stimulation, through hydrocarbon-bearing formations, towards motion sensors. The waves’ characteristics encode the location of their source and its focal mechanism. The analysis of various approaches to harvesting the source-related information from microseismic records has singled out the accuracy of the velocity model, fully accounting for the strong elastic anisotropy of hydraulically fractured shales, as the most critical ingredient for obtaining precise source locations and interpretable moment tensors. The ray theory complemented by its modern extensions, paraxial and Fréchet ray tracing, provides the only practical means available today for building such models. The book is written for geophysicists interested in learning and applying advanced microseismic data-processing techniques.
Ground Vehicle Dynamics is devoted to the mathematical modelling and dynamical analysis of ground vehicle systems composed of the vehicle body, the guidance and suspension devices and the corresponding guideway. Automobiles on uneven roads and railways on flexible tracks are prominent representatives of ground vehicle systems. All these different kinds of systems are treated in a common way by means of analytical dynamics and control theory. In addition to a detailed modelling of vehicles as multibody systems, the contact theory for rolling wheels and the modelling of guideways by finite element systems as well as stochastic processes are presented. As a particular result of this integrated approach the state equations of the global systems are obtained including the complete interactions between the subsystems considered as independent modules. The fundamentals of vehicle dynamics for longitudinal, lateral and vertical motions and vibrations of automobiles and railways are discussed in detail.
This book constitutes the refereed proceedings of the 14th International Conference on Database and Expert Systems Applcations, DEXA 2003, held in Prague, Czech Republic, in September 2003. The 91 revised full papers presented together with an invited paper and a position paper were carefully reviewed and selected from 236 submissions. The papers are organized in topical sections on XML, data modeling, spatial database systems, mobile computing, transactions, bioinformatics, information retrieval, multimedia databases, Web applications, ontologies, object-oriented databases, query optimization, workflow systems, knowledge engineering, and security.
Scanning Probe Microscopy provides a comprehensive source of information for researchers, teachers, and graduate students about the rapidly expanding field of scanning probe theory. Written in the style of a textbook, it explains from scratch the theory behind today’s simulation techniques and gives examples of theoretical concepts through state-of-the-art simulations, including the means to compare these results with experimental data. The book provides the first comprehensive framework for electron transport theory with its various degrees of approximations used in today’s research, thus allowing extensive insight into the physics of scanning probes. Experimentalists will appreciate how the instrument's operation is changed by materials properties; theorists will understand how simulations can be directly compared to experimental data.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.