A comprehensive, step-by-step reference to the Nyström Method for solving Electromagnetic problems using integral equations Computational electromagnetics studies the numerical methods or techniques that solve electromagnetic problems by computer programming. Currently, there are mainly three numerical methods for electromagnetic problems: the finite-difference time-domain (FDTD), finite element method (FEM), and integral equation methods (IEMs). In the IEMs, the method of moments (MoM) is the most widely used method, but much attention is being paid to the Nyström method as another IEM, because it possesses some unique merits which the MoM lacks. This book focuses on that method—providing information on everything that students and professionals working in the field need to know. Written by the top researchers in electromagnetics, this complete reference book is a consolidation of advances made in the use of the Nyström method for solving electromagnetic integral equations. It begins by introducing the fundamentals of the electromagnetic theory and computational electromagnetics, before proceeding to illustrate the advantages unique to the Nyström method through rigorous worked out examples and equations. Key topics include quadrature rules, singularity treatment techniques, applications to conducting and penetrable media, multiphysics electromagnetic problems, time-domain integral equations, inverse scattering problems and incorporation with multilevel fast multiple algorithm. Systematically introduces the fundamental principles, equations, and advantages of the Nyström method for solving electromagnetic problems Features the unique benefits of using the Nyström method through numerical comparisons with other numerical and analytical methods Covers a broad range of application examples that will point the way for future research The Nystrom Method in Electromagnetics is ideal for graduate students, senior undergraduates, and researchers studying engineering electromagnetics, computational methods, and applied mathematics. Practicing engineers and other industry professionals working in engineering electromagnetics and engineering mathematics will also find it to be incredibly helpful.
Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral equation research. Also, learning the fundamentals of linear elastic wave theory does not require a quantum leap for electromagnetic practitioners. Integral equation methods have been around for several decades, and their introduction to electromagnetics has been due to the seminal works of Richmond and Harrington in the 1960s. There was a surge in the interest in this topic in the 1980s (notably the work of Wilton and his coworkers) due to increased computing power. The interest in this area was on the wane when it was demonstrated that differential equation methods, with their sparse matrices, can solve many problems more efficiently than integral equation methods. Recently, due to the advent of fast algorithms, there has been a revival in integral equation methods in electromagnetics. Much of our work in recent years has been in fast algorithms for integral equations, which prompted our interest in integral equation methods. While previously, only tens of thousands of unknowns could be solved by integral equation methods, now, tens of millions of unknowns can be solved with fast algorithms. This has prompted new enthusiasm in integral equation methods. Table of Contents: Introduction to Computational Electromagnetics / Linear Vector Space, Reciprocity, and Energy Conservation / Introduction to Integral Equations / Integral Equations for Penetrable Objects / Low-Frequency Problems in Integral Equations / Dyadic Green's Function for Layered Media and Integral Equations / Fast Inhomogeneous Plane Wave Algorithm for Layered Media / Electromagnetic Wave versus Elastic Wave / Glossary of Acronyms
Electrical Engineering/Electromagnetics Waves and Fields in Inhomogeneous Media A Volume in the IEEE Press Series on Electromagnetic Waves Donald G. Dudley, Series Editor ".it is one of the best wave propagation treatments to appear in many years." Gerardo G. Tango, CPG, Consulting Seismologist-Acoustician, Covington, LA This comprehensive text thoroughly covers fundamental wave propagation behaviors and computational techniques for waves in inhomogeneous media. The author describes powerful and sophisticated analytic and numerical methods to solve electromagnetic problems for complex media and geometry as well. Problems are presented as realistic models of actual situations which arise in the areas of optics, radio wave propagation, geophysical prospecting, nondestructive testing, biological sensing, and remote sensing. Key topics covered include: * Analytical methods for planarly, cylindrically and spherically layered media * Transient waves, including the Cagniard-de Hoop method * Variational methods for the scalar wave equation and the electromagnetic wave equation * Mode-matching techniques for inhomogeneous media * The Dyadic Green's function and its role in simplifying problem-solving in inhomogeneous media * Integral equation formulations and inverse problems * Time domain techniques for inhomogeneous media This book will be of interest to electromagnetics and remote sensing engineers, physicists, scientists, and geophysicists. This IEEE Press reprinting of the 1990 version published by Van Nostrand Reinhold incorporates corrections and minor updating. Also in the series. Mathematical Foundations for Electromagnetic Theory by Donald G. Dudley, University of Arizona at Tucson This volume in the series lays the mathematical foundations for the study of advanced topics in electromagnetic theory. Important subjects covered include linear spaces, Green's functions, spectral expansions, electromagnetic source representations, and electromagnetic boundary value problems. 1994 Hardcover 264 pp ISBN 0-7803-1022-5 IEEE Order No. PC3715 About the Series The IEEE Press Series on Electromagnetic Waves consists of new titles as well as reprints and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level.
A comprehensive, step-by-step reference to the Nyström Method for solving Electromagnetic problems using integral equations Computational electromagnetics studies the numerical methods or techniques that solve electromagnetic problems by computer programming. Currently, there are mainly three numerical methods for electromagnetic problems: the finite-difference time-domain (FDTD), finite element method (FEM), and integral equation methods (IEMs). In the IEMs, the method of moments (MoM) is the most widely used method, but much attention is being paid to the Nyström method as another IEM, because it possesses some unique merits which the MoM lacks. This book focuses on that method—providing information on everything that students and professionals working in the field need to know. Written by the top researchers in electromagnetics, this complete reference book is a consolidation of advances made in the use of the Nyström method for solving electromagnetic integral equations. It begins by introducing the fundamentals of the electromagnetic theory and computational electromagnetics, before proceeding to illustrate the advantages unique to the Nyström method through rigorous worked out examples and equations. Key topics include quadrature rules, singularity treatment techniques, applications to conducting and penetrable media, multiphysics electromagnetic problems, time-domain integral equations, inverse scattering problems and incorporation with multilevel fast multiple algorithm. Systematically introduces the fundamental principles, equations, and advantages of the Nyström method for solving electromagnetic problems Features the unique benefits of using the Nyström method through numerical comparisons with other numerical and analytical methods Covers a broad range of application examples that will point the way for future research The Nystrom Method in Electromagnetics is ideal for graduate students, senior undergraduates, and researchers studying engineering electromagnetics, computational methods, and applied mathematics. Practicing engineers and other industry professionals working in engineering electromagnetics and engineering mathematics will also find it to be incredibly helpful.
Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral equation research. Also, learning the fundamentals of linear elastic wave theory does not require a quantum leap for electromagnetic practitioners. Integral equation methods have been around for several decades, and their introduction to electromagnetics has been due to the seminal works of Richmond and Harrington in the 1960s. There was a surge in the interest in this topic in the 1980s (notably the work of Wilton and his coworkers) due to increased computing power. The interest in this area was on the wane when it was demonstrated that differential equation methods, with their sparse matrices, can solve many problems more efficiently than integral equation methods. Recently, due to the advent of fast algorithms, there has been a revival in integral equation methods in electromagnetics. Much of our work in recent years has been in fast algorithms for integral equations, which prompted our interest in integral equation methods. While previously, only tens of thousands of unknowns could be solved by integral equation methods, now, tens of millions of unknowns can be solved with fast algorithms. This has prompted new enthusiasm in integral equation methods. Table of Contents: Introduction to Computational Electromagnetics / Linear Vector Space, Reciprocity, and Energy Conservation / Introduction to Integral Equations / Integral Equations for Penetrable Objects / Low-Frequency Problems in Integral Equations / Dyadic Green's Function for Layered Media and Integral Equations / Fast Inhomogeneous Plane Wave Algorithm for Layered Media / Electromagnetic Wave versus Elastic Wave / Glossary of Acronyms
Electrical Engineering/Electromagnetics Waves and Fields in Inhomogeneous Media A Volume in the IEEE Press Series on Electromagnetic Waves Donald G. Dudley, Series Editor ".it is one of the best wave propagation treatments to appear in many years." Gerardo G. Tango, CPG, Consulting Seismologist-Acoustician, Covington, LA This comprehensive text thoroughly covers fundamental wave propagation behaviors and computational techniques for waves in inhomogeneous media. The author describes powerful and sophisticated analytic and numerical methods to solve electromagnetic problems for complex media and geometry as well. Problems are presented as realistic models of actual situations which arise in the areas of optics, radio wave propagation, geophysical prospecting, nondestructive testing, biological sensing, and remote sensing. Key topics covered include: * Analytical methods for planarly, cylindrically and spherically layered media * Transient waves, including the Cagniard-de Hoop method * Variational methods for the scalar wave equation and the electromagnetic wave equation * Mode-matching techniques for inhomogeneous media * The Dyadic Green's function and its role in simplifying problem-solving in inhomogeneous media * Integral equation formulations and inverse problems * Time domain techniques for inhomogeneous media This book will be of interest to electromagnetics and remote sensing engineers, physicists, scientists, and geophysicists. This IEEE Press reprinting of the 1990 version published by Van Nostrand Reinhold incorporates corrections and minor updating. Also in the series. Mathematical Foundations for Electromagnetic Theory by Donald G. Dudley, University of Arizona at Tucson This volume in the series lays the mathematical foundations for the study of advanced topics in electromagnetic theory. Important subjects covered include linear spaces, Green's functions, spectral expansions, electromagnetic source representations, and electromagnetic boundary value problems. 1994 Hardcover 264 pp ISBN 0-7803-1022-5 IEEE Order No. PC3715 About the Series The IEEE Press Series on Electromagnetic Waves consists of new titles as well as reprints and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.