In World Mathematical Year 2000 the traditional St. Flour Summer School was hosted jointly with the European Mathematical Society. Sergio Albeverio reviews the theory of Dirichlet forms, and gives applications including partial differential equations, stochastic dynamics of quantum systems, quantum fields and the geometry of loop spaces. The second text, by Walter Schachermayer, is an introduction to the basic concepts of mathematical finance, including the Bachelier and Black-Scholes models. The fundamental theorem of asset pricing is discussed in detail. Finally Michel Talagrand, gives an overview of the mean field models for spin glasses. This text is a major contribution towards the proof of certain results from physics, and includes a discussion of the Sherrington-Kirkpatrick and the p-spin interaction models.
Proof of the "Fundamental Theorem of Asset Pricing" in its general form by Delbaen and Schachermayer was a milestone in the history of modern mathematical finance and now forms the cornerstone of this book. Puts into book format a series of major results due mostly to the authors of this book. Embeds highest-level research results into a treatment amenable to graduate students, with introductory, explanatory background. Awaited in the quantitative finance community.
Copula Methods in Finance is the first book to address the mathematics of copula functions illustrated with finance applications. It explains copulas by means of applications to major topics in derivative pricing and credit risk analysis. Examples include pricing of the main exotic derivatives (barrier, basket, rainbow options) as well as risk management issues. Particular focus is given to the pricing of asset-backed securities and basket credit derivative products and the evaluation of counterparty risk in derivative transactions.
On the the mathematical aspects of the theory of carrier transport in semiconductor devices. The subjects covered include hydrodynamical models for semiconductors based on the maximum entropy principle of extended thermodynamics, mathematical theory of drift-diffusion equations with applications, and the methods of asymptotic analysis.
Integration theory deals with extended real-valued, vector-valued, or operator-valued measures and functions, but different approaches are used for each case. This book develops a general theory of integration that simultaneously deals with all three cases.
Proof of the "Fundamental Theorem of Asset Pricing" in its general form by Delbaen and Schachermayer was a milestone in the history of modern mathematical finance and now forms the cornerstone of this book. Puts into book format a series of major results due mostly to the authors of this book. Embeds highest-level research results into a treatment amenable to graduate students, with introductory, explanatory background. Awaited in the quantitative finance community.
This volume includes the five lecture courses given at the CIME-EMS School on "Stochastic Methods in Finance" held in Bressanone/Brixen, Italy 2003. It deals with innovative methods, mainly from stochastic analysis, that play a fundamental role in the mathematical modelling of finance and insurance: the theory of stochastic processes, optimal and stochastic control, stochastic differential equations, convex analysis and duality theory. Five topics are treated in detail: Utility maximization in incomplete markets; the theory of nonlinear expectations and its relationship with the theory of risk measures in a dynamic setting; credit risk modelling; the interplay between finance and insurance; incomplete information in the context of economic equilibrium and insider trading.
In World Mathematical Year 2000 the traditional St. Flour Summer School was hosted jointly with the European Mathematical Society. Sergio Albeverio reviews the theory of Dirichlet forms, and gives applications including partial differential equations, stochastic dynamics of quantum systems, quantum fields and the geometry of loop spaces. The second text, by Walter Schachermayer, is an introduction to the basic concepts of mathematical finance, including the Bachelier and Black-Scholes models. The fundamental theorem of asset pricing is discussed in detail. Finally Michel Talagrand, gives an overview of the mean field models for spin glasses. This text is a major contribution towards the proof of certain results from physics, and includes a discussion of the Sherrington-Kirkpatrick and the p-spin interaction models.
In World Mathematical Year 2000 the traditional St. Flour Summer School was hosted jointly with the European Mathematical Society. Sergio Albeverio reviews the theory of Dirichlet forms, and gives applications including partial differential equations, stochastic dynamics of quantum systems, quantum fields and the geometry of loop spaces. The second text, by Walter Schachermayer, is an introduction to the basic concepts of mathematical finance, including the Bachelier and Black-Scholes models. The fundamental theorem of asset pricing is discussed in detail. Finally Michel Talagrand, gives an overview of the mean field models for spin glasses. This text is a major contribution towards the proof of certain results from physics, and includes a discussion of the Sherrington-Kirkpatrick and the p-spin interaction models.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.