For a long time - at least from Fermat to Minkowski - the theory of quadratic forms was a part of number theory. Much of the best work of the great number theorists of the eighteenth and nineteenth century was concerned with problems about quadratic forms. On the basis of their work, Minkowski, Siegel, Hasse, Eichler and many others crea ted the impressive "arithmetic" theory of quadratic forms, which has been the object of the well-known books by Bachmann (1898/1923), Eichler (1952), and O'Meara (1963). Parallel to this development the ideas of abstract algebra and abstract linear algebra introduced by Dedekind, Frobenius, E. Noether and Artin led to today's structural mathematics with its emphasis on classification problems and general structure theorems. On the basis of both - the number theory of quadratic forms and the ideas of modern algebra - Witt opened, in 1937, a new chapter in the theory of quadratic forms. His most fruitful idea was to consider not single "individual" quadratic forms but rather the entity of all forms over a fixed ground field and to construct from this an algebra ic object. This object - the Witt ring - then became the principal object of the entire theory. Thirty years later Pfister demonstrated the significance of this approach by his celebrated structure theorems.
This book arose from a course of lectures given by the first author during the winter term 1977/1978 at the University of Münster (West Germany). The course was primarily addressed to future high school teachers of mathematics; it was not meant as a systematic introduction to number theory but rather as a historically motivated invitation to the subject, designed to interest the audience in number-theoretical questions and developments. This is also the objective of this book, which is certainly not meant to replace any of the existing excellent texts in number theory. Our selection of topics and examples tries to show how, in the historical development, the investigation of obvious or natural questions has led to more and more comprehensive and profound theories, how again and again, surprising connections between seemingly unrelated problems were discovered, and how the introduction of new methods and concepts led to the solution of hitherto unassailable questions. All this means that we do not present the student with polished proofs (which in turn are the fruit of a long historical development); rather, we try to show how these theorems are the necessary consequences of natural questions. Two examples might illustrate our objectives.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.