This book provides analytical and numerical methods for the estimation of dimension characteristics (Hausdorff, Fractal, Carathéodory dimensions) for attractors and invariant sets of dynamical systems and cocycles generated by smooth differential equations or maps in finite-dimensional Euclidean spaces or on manifolds. It also discusses stability investigations using estimates based on Lyapunov functions and adapted metrics. Moreover, it introduces various types of Lyapunov dimensions of dynamical systems with respect to an invariant set, based on local, global and uniform Lyapunov exponents, and derives analytical formulas for the Lyapunov dimension of the attractors of the Hénon and Lorenz systems. Lastly, the book presents estimates of the topological entropy for general dynamical systems in metric spaces and estimates of the topological dimension for orbit closures of almost periodic solutions to differential equations.
This book provides analytical and numerical methods for the estimation of dimension characteristics (Hausdorff, Fractal, Carathéodory dimensions) for attractors and invariant sets of dynamical systems and cocycles generated by smooth differential equations or maps in finite-dimensional Euclidean spaces or on manifolds. It also discusses stability investigations using estimates based on Lyapunov functions and adapted metrics. Moreover, it introduces various types of Lyapunov dimensions of dynamical systems with respect to an invariant set, based on local, global and uniform Lyapunov exponents, and derives analytical formulas for the Lyapunov dimension of the attractors of the Hénon and Lorenz systems. Lastly, the book presents estimates of the topological entropy for general dynamical systems in metric spaces and estimates of the topological dimension for orbit closures of almost periodic solutions to differential equations.
This book is devoted to the estimation of dimension-like characteristics (Hausdorff dimension, fractal dimension, Lyapunov dimension, topological entropy) for attractors (mainly global B-attractors) of ordinary differential equations, time-discrete systems and dynamical systems on finite-dimensional manifolds. The contraction under flows of parameter-dependent outer measures is shown by introducing varying Lyapunov functions or metric tensors in the calculation of singular values. For the attractors of the Henon and Lorenz systems, exact formulae for the Lyapunov dimension are derived.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.