Laser-plasma interaction is a continuously growing field with a broad range of applications in fundamental science, industry, and medicine. This book provides a comprehensive introduction to the physics of the interaction of intense laser pulses with high-temperature plasmas motivated by applications in high-energy-density physics and inertial confinement fusion. It combines the presentation of basic elements of the kinetics of charged particles in plasma and properties of electromagnetic waves with up-to-date developments related to nonlinear laser-plasma interactions, plasma heating, particle acceleration, excitation and mitigation of parametric instabilities. The book is based on the lectures taught by the author to students at master’s and graduate levels. It provides original material combining qualitative descriptions of physical processes with a strict but accessible theoretical background and practical exercises.
This book explains the principles of laser beam interactions applied to the recording, readout, and processing of information-carrying optical waves. It treats both quantitatively and qualitatively the specific effects that appear due to the fine-scale speckle structure of the spatial profile of a laser-originated wave. The basics of the nature, physics, and properties of the speckle fields, as well as the fundamentals of holography and nonlinear optics, are discussed.
This book focuses on the non-traditional branches of physics and mechanics of shock waves that have arisen recently in connection with the intensive study of these waves in a wide variety of phenomena - from nuclear matter to clusters of galaxies. The book is devoted to the various physical phenomena and properties of intense shock waves. The author addresses methods of generation, diagnostics, as well as theoretical methods for describing shock waves at extremely high pressures and temperatures in laboratory and quasi-laboratory conditions. The state of materials with high energy density generated by shock wave compression is discussed. In addition, the book aims to systematize, generalize, and describe from a universal viewpoint the extensive theoretical and experimental material on the physics of high energy densities - the physics and mechanics of intense shock waves. The book is based on lectures delivered by the author at the Moscow Institute of Physics and Technology, the Higher School of Physics of Rosatom State Nuclear Energy Corporation, as well as overviews presented at many scientific conferences and symposia. It is useful to a wide range of researchers in natural sciences, giving them access to original works and allowing them to navigate the fascinating problems of the modern science of intense shock waves.
With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams, electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets and in many other situations characterized by extremely high pressures and temperatures. Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.