Wavelet theory lies on the crossroad of pure and computational mathematics, with connections to audio and video signal processing, data compression, and information transmission. The present book is devoted to a systematic exposition of modern wavelet theory. It details the construction of orthogonal and biorthogonal systems of wavelets and studies their structural and approximation properties, starting with basic theory and ending with special topics and problems. The book also presents some applications of wavelets. Historical commentary is supplied for each chapter in the book, and most chapters contain exercises. The book is intended for professional mathematicians and graduate students working in functional analysis and approximation theory. It is also useful for engineers applying wavelet theory in their work. Prerequisites for reading the book consist of graduate courses in real and functional analysis.
This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximation order, namely compactly supported wavelet frames, which are commonly required by engineers. It particularly focuses on methods of constructing them. Wavelet bases and frames are actively used in numerous applications such as audio and graphic signal processing, compression and transmission of information. They are especially useful in image recovery from incomplete observed data due to the redundancy of frame systems. The construction of multivariate wavelet frames, especially bases, with desirable properties remains a challenging problem as although a general scheme of construction is well known, its practical implementation in the multidimensional setting is difficult. Another important feature of wavelet is symmetry. Different kinds of wavelet symmetry are required in various applications, since they preserve linear phase properties and also allow symmetric boundary conditions in wavelet algorithms, which normally deliver better performance. The authors discuss how to provide H-symmetry, where H is an arbitrary symmetry group, for wavelet bases and frames. The book also studies so-called frame-like wavelet systems, which preserve many important properties of frames and can often be used in their place, as well as their approximation properties. The matrix method of computing the regularity of refinable function from the univariate case is extended to multivariate refinement equations with arbitrary dilation matrices. This makes it possible to find the exact values of the Hölder exponent of refinable functions and to make a very refine analysis of their moduli of continuity.
Was the Bolshevik success in Russia during the revolution and civil war years a legitimate expression of the will of the people? Or did Russian workers, peasants, bourgeoisie, and upper-class groups pose numerous challenges to Bolshevik authority, challenges that were put down through unyielding repression? In this book distinguished scholars from East and West draw on recently opened archives to challenge the commonly held view that the Bolsheviks enjoyed widespread support and that their early history was simply a march toward inevitable victory. They show instead that during this period Russian society was at war with itself and with the Bolsheviks. Authors discuss such previously neglected subjects as government policies toward women and toward religious institutions, the protests of workers and peasants, and the anti-Bolshevik movements and parties. In particular, they investigate the actions of other political parties and White leaders, the peasant rebellions and workers' strikes, Bolshevik operations against the church, attitudes toward peasant and working-class women, and new data on Lenin (the last in a chapter by Richard Pipes). Describing not one civil war but several social, political, and military confrontations going on simultaneously, they portray a Russia in turmoil and an outcome that was by no means inevitable.
Mechanics of Fatigue addresses the range of topics concerning damage, fatigue, and fracture of engineering materials and structures. The core of this resource builds upon the synthesis of micro- and macro-mechanics of fracture. In micromechanics, both the modeling of mechanical phenomena on the level of material structure and the continuous approach are based on the use of certain internal field parameters characterizing the dispersed micro-damage. This is referred to as continuum damage mechanics. The author develops his own theory for macromechanics, called analytical fracture mechanics. This term means the system cracked body - loading or loading device - is considered as a mechanical system and the tools of analytical (rational) mechanics are applied thoroughly to describe crack propagation until the final failure. Chapter discuss: preliminary information on fatigue and engineering methods for design of machines and structures against failures caused by fatigue fatigue crack nucleation, including microstructural and continuous models theory of fatigue crack propagation fatigue crack growth in linear elastic materials subject to dispersed damage fatigue cracks in elasto-plastic material, including crack growth retardation due to overloading as well as quasistationary approximation fatigue and related phenomena in hereditary solids application of the theory fatigue crack growth considering environmental factors unidirectional fiber composites with ductile matrix and brittle, initially continuous fibers laminate composites Mechanics of Fatigue serves students dealing with mechanical aspects of fatigue, conducting research in fracture mechanics, structural safety, mechanics of composites, as well as modern branches of mechanics of solids and structures.
This self-contained textbook is an informal introduction to optimization through the use of numerous illustrations and applications. The focus is on analytically solving optimization problems with a finite number of continuous variables. In addition, the authors provide introductions to classical and modern numerical methods of optimization and to dynamic optimization. The book's overarching point is that most problems may be solved by the direct application of the theorems of Fermat, Lagrange, and Weierstrass. The authors show how the intuition for each of the theoretical results can be supported by simple geometric figures. They include numerous applications through the use of varied classical and practical problems. Even experts may find some of these applications truly surprising. A basic mathematical knowledge is sufficient to understand the topics covered in this book. More advanced readers, even experts, will be surprised to see how all main results can be grounded on the Fermat-Lagrange theorem. The book can be used for courses on continuous optimization, from introductory to advanced, for any field for which optimization is relevant.
Scholars attribute the collapse of the Soviet Union in part to the militarization of its economy. But during the Cold War, economic studies of the USSR largely neglected the military sector of the Soviet economy-its dominant and most successful part. This is all the more puzzling in that academic study of the Soviet economy in the US was specifically created to help fight the Cold War. If the rival superpower maintained the peacetime war economy, why did experts fail to tell us when it mattered? Vladimir Kontorovich shows how Western economists came up with strained non-military interpretations of several important aspects of the Soviet economy which the Soviets themselves acknowledged to have military significance. Such "civilianization" suggests that the neglect of the military sector was not forced on scholars of the Soviet economy by secrecy; it was their choice. The explanation of this choice in Reluctant Cold Warriors raises many questions about the internal workings of economic Sovietology and its intellectual and political background. Are peripheral academic fields mimicking the agenda of the discipline's mainstream more likely to produce faulty scholarship? Did the search for the essence of socialism distract researchers from the actual Soviet economy? Were economic Sovietologists under political pressure, and if so, in what direction? This book answers these questions in a way that has broad relevance for national security uses of social science today.
A design reference for engineers developing composite components for automotive chassis, suspension, and drivetrain applications This book provides a theoretical background for the development of elements of car suspensions. It begins with a description of the elastic-kinematics of the vehicle and closed form solutions for the vertical and lateral dynamics. It evaluates the vertical, lateral, and roll stiffness of the vehicle, and explains the necessity of the modelling of the vehicle stiffness. The composite materials for the suspension and powertrain design are discussed and their mechanical properties are provided. The book also looks at the basic principles for the design optimization using composite materials and mass reduction principles. Additionally, references and conclusions are presented in each chapter. Design and Analysis of Composite Structures for Automotive Applications: Chassis and Drivetrain offers complete coverage of chassis components made of composite materials and covers elastokinematics and component compliances of vehicles. It looks at parts made of composite materials such as stabilizer bars, wheels, half-axes, springs, and semi-trail axles. The book also provides information on leaf spring assembly for motor vehicles and motor vehicle springs comprising composite materials. Covers the basic principles for the design optimization using composite materials and mass reduction principles Evaluates the vertical, lateral, and roll stiffness of the vehicle, and explains the modelling of the vehicle stiffness Discusses the composite materials for the suspension and powertrain design Features closed form solutions of problems for car dynamics explained in details and illustrated pictorially Design and Analysis of Composite Structures for Automotive Applications: Chassis and Drivetrain is recommended primarily for engineers dealing with suspension design and development, and those who graduated from automotive or mechanical engineering courses in technical high school, or in other higher engineering schools.
Inverse problems of spectral analysis deal with the reconstruction of operators of the specified form in Hilbert or Banach spaces from certain of their spectral characteristics. An interest in spectral problems was initially inspired by quantum mechanics. The main inverse spectral problems have been solved already for Schrödinger operators and for their finite-difference analogues, Jacobi matrices. This book treats inverse problems in the theory of small oscillations of systems with finitely many degrees of freedom, which requires finding the potential energy of a system from the observations of its oscillations. Since oscillations are small, the potential energy is given by a positive definite quadratic form whose matrix is called the matrix of potential energy. Hence, the problem is to find a matrix belonging to the class of all positive definite matrices. This is the main difference between inverse problems studied in this book and the inverse problems for discrete analogues of the Schrödinger operators, where only the class of tridiagonal Hermitian matrices are considered.
With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams, electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets and in many other situations characterized by extremely high pressures and temperatures. Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.
Written by a distinguished plasma scientist and experienced author, this up-to-date work comprehensively covers current methods and new developments and techniques, including non-equilibrium atomic and molecular plasma states, as well as such new applications as gas lasers. Containing numerous appendices with reference data indispensable for plasma spectroscopy, such as statistical weights and partition sums and diatomic molecules. For plasmaphysicists, spectroscopists, materials scientists and physical chemists. Appendix H is only available online.
This book is an introduction to convex analysis and some of its applications. It starts with basis theory, which is explained within the framework of finite-dimensional spaces. The only prerequisites are basic analysis and simple geometry. The second chapter presents some applications of convex analysis, including problems of linear programming, geometry, and approximation. Special attention is paid to applications of convex analysis to Kolmogorov-type inequalities for derivatives of functions is one variable. Chapter 3 collects some results on geometry and convex analysis in infinite-dimensional spaces. A comprehensive introduction written "for beginners" illustrates the fundamentals of convex analysis in finite-dimensional spaces. The book can be used for an advanced undergraduate or graduate level course on convex analysis and its applications. It is also suitable for independent study of this extremely important area of mathematics.
Proceedings of the International Conference on Functional Analysis and its Applications dedicated to the 110th Anniversary of Stefan Banach, May 28-31, 2002, Lviv, Ukraine
Proceedings of the International Conference on Functional Analysis and its Applications dedicated to the 110th Anniversary of Stefan Banach, May 28-31, 2002, Lviv, Ukraine
The conference took place in Lviv, Ukraine and was dedicated to a famous Polish mathematician Stefan Banach ƒ{ the most outstanding representative of the Lviv mathematical school. Banach spaces, introduced by Stefan Banach at the beginning of twentieth century, are familiar now to every mathematician. The book contains a short historical article and scientific contributions of the conference participants, mostly in the areas of functional analysis, general topology, operator theory and related topics.
This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximation order, namely compactly supported wavelet frames, which are commonly required by engineers. It particularly focuses on methods of constructing them. Wavelet bases and frames are actively used in numerous applications such as audio and graphic signal processing, compression and transmission of information. They are especially useful in image recovery from incomplete observed data due to the redundancy of frame systems. The construction of multivariate wavelet frames, especially bases, with desirable properties remains a challenging problem as although a general scheme of construction is well known, its practical implementation in the multidimensional setting is difficult. Another important feature of wavelet is symmetry. Different kinds of wavelet symmetry are required in various applications, since they preserve linear phase properties and also allow symmetric boundary conditions in wavelet algorithms, which normally deliver better performance. The authors discuss how to provide H-symmetry, where H is an arbitrary symmetry group, for wavelet bases and frames. The book also studies so-called frame-like wavelet systems, which preserve many important properties of frames and can often be used in their place, as well as their approximation properties. The matrix method of computing the regularity of refinable function from the univariate case is extended to multivariate refinement equations with arbitrary dilation matrices. This makes it possible to find the exact values of the Hölder exponent of refinable functions and to make a very refine analysis of their moduli of continuity.
Wavelet theory lies on the crossroad of pure and computational mathematics, with connections to audio and video signal processing, data compression, and information transmission. The present book is devoted to a systematic exposition of modern wavelet theory. It details the construction of orthogonal and biorthogonal systems of wavelets and studies their structural and approximation properties, starting with basic theory and ending with special topics and problems. The book also presents some applications of wavelets. Historical commentary is supplied for each chapter in the book, and most chapters contain exercises. The book is intended for professional mathematicians and graduate students working in functional analysis and approximation theory. It is also useful for engineers applying wavelet theory in their work. Prerequisites for reading the book consist of graduate courses in real and functional analysis.
This book studies the cultural, societal, and ideological factors absent from popular discourse on Vladimir Putin’s Russia, contesting the misleading mainstream assumption that Putin is the all-powerful sovereign of Russia. In carefully examining the ideological underpinnings of Putinism—its tsarist and Soviet elements, its intellectual origins, its culturally reproductive nature, and its imperialist foreign policy—the authors reveal that an indoctrinating ideology and a willing population are simultaneously the most crucial yet overlooked keys to analyzing Putin’s totalitarian democracy. Because Putinism is part of a global wave of extreme political movements, the book also reaffirms the need to understand—but not accept—how and why nation-states and masses turn to nationalism, authoritarianism, or totalitarianism in modern times.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.