The book introduces readers to the concept of weightlessness and microgravity, and presents several examples of microgravity research in fluid physics, the material sciences and human physiology. Further, it explains a range of basic physical concepts (inertia, reference frames, mass and weight, accelerations, gravitation and weightiness, free fall, trajectories, and platforms for microgravity research) in simple terms. The last section addresses the physiological effects of weightlessness. The book’s simple didactic approach makes it easy to read: equations are kept to a minimum, while examples and applications are presented in the appendices. Simple sketches and photos from actual space missions illustrate the main content. This book allows readers to understand the space environment that astronauts experience on board space stations, and to more closely follow on-going and future space missions in Earth orbit and to Mars.
The sturgeon they sent was second grade fresh,' said the barman. 'Really, what nonsense/' 'Why nonsense?' '"Second grade fresh" that's what I call nonsense/ There's only one degree of freshness the first, and it's the last) (M. A. Bulgakov, The Master and Margarita) The goal of this book is to describe in detail how Feynman integrals can be expanded in suitable parameters, when various momenta or masses are small or large. In a narrow sense, this problem is connected with practical calcula tions. In a situation where a given Feynman integral depends on parameters of very different scales, a natural idea is to replace it by a sufficiently large number of terms of an expansion of it in ratios of small and large scales. It will be explained how this problem of expansion can be systematically solved, by formulating universal prescriptions that express terms of the expansion by using the original Feynman integral with its integrand expanded into a Taylor series in appropriate momenta and masses. It turns out that knowledge of the structure of the asymptotic expansion at the diagrammatic level is a key point in understanding how to perform expansions at the operator level. There are various examples of these ex pansions: the operator product expansion, the large mass expansion, Heavy Quark Effective Theory, Non Relativistic QCD, etc. Each of them serves as a realization of the factorization of contributions of different scales.
Chemical derivatisation of functional groups has proved popular since the beginning of organic mass spectrometry as a means to enhance the stability and volatility of the analytes as well as facilitating structure elucidation. This book provides comprehensive information on the wide range of derivatisation methods. Each chapter looks at a particular area of derivatisation and includes extensive references to the literature for further research where necessary. There are nearly 1800 references, which, as well as full bibliographic information, include chapter/paper titles where appropriate and Digital Object Identifiers (DOIs) to allow easy retrieval of the online version of the referenced publication. The emergence of atmospheric pressure ionisation and other soft ionisation techniques has not diminished the interest in such chemical techniques, as witnessed by the many chemical tags used in quantitative proteomics (Chapter 9). The last two chapters, a substantial part of the book, deal with derivatisation for use with soft ionisation of both small and large molecules. Chapters Silylation Acylation Alkylation (Arylation) Cyclic derivatives Monofunctional compounds Polyfunctional compounds On-line derivatisation/degradation Soft ionisation—small molecules Soft ionisation—large molecules
This book contains selected conference presentations which cover theoretical and applicative aspects of starch chemistry and technology. Among chapters presenting results of the research in particular laboratories, there are also reviews on the present state of knowledge on structure starch granules, their biosynthesis, effect of starch structure upon its functional properties, chemical modifications of starch.
This edition examines fundamental concepts and principles practitioners need to understand in order to make decisions on what might be appropriate in the programme design for their athletes. An integration of coaching theory and scientific underpinnings, this book is useful for those interested in muscular strength.
This book describes the newest achievements in the area of electrochemically and chemically deposited metals and alloys. In particular, the book is devoted to the surface morphology of deposited metals and alloys. It contains an in-depth analysis of the influence of the parameters of electrodeposition or chemical deposition of metals and alloys, which will likely lead to technological advances in industrial settings world-wide. Professionals in electrometallurgical and electroplating plants will find the book indispensable. This book will also be useful in the automotive, aerospace, electronics, energy device and biomedical industries. In academia, researchers in electrodeposition at both undergraduate and graduate levels will find this book a very valuable resource for their courses and projects.
With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams, electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets and in many other situations characterized by extremely high pressures and temperatures. Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.
The present book provides to the main ideas and techniques of the rapid progressing field of quantum information and quantum computation using isotope - mixed materials. It starts with an introduction to the isotope physics and then describes of the isotope - based quantum information and quantum computation. The ability to manipulate and control electron and/or nucleus spin in semiconductor devices provides a new route to expand the capabilities of inorganic semiconductor-based electronics and to design innovative devices with potential application in quantum computing. One of the major challenges towards these objectives is to develop semiconductor-based systems and architectures in which the spatial distribution of spins and their properties can be controlled. For instance, to eliminate electron spin decoherence resulting from hyperfine interaction due to nuclear spin background, isotopically controlled devices are needed (i.e., nuclear spin-depleted). In other emerging concepts, the control of the spatial distribution of isotopes with nuclear spins is a prerequisite to implement the quantum bits (or qbits). Therefore, stable semiconductor isotopes are important elements in the development of solid-state quantum information. There are not only different algorithms of quantum computation discussed but also the different models of quantum computers are presented. With numerous illustrations this small book is of great interest for undergraduate students taking courses in mesoscopic physics or nanoelectronics as well as quantum information, and academic and industrial researches working in this field.
The aim of this book is the pedagogical exploration of the basic principles of quantum-statistical thermodynamics as applied to various states of matter – ranging from rare gases to astrophysical matter with high-energy density. The reader will learn in this work that thermodynamics and quantum statistics are still the concepts on which even the most advanced research is operating - despite of a flood of modern concepts, classical entities like temperature, pressure, energy and entropy are shown to remain fundamental. The physics of gases, plasmas and high-energy density matter is still a growing field and even though solids and liquids dominate our daily life, more than 99 percent of the visible Universe is in the state of gases and plasmas and the overwhelming part of matter exists at extreme conditions connected with very large energy densities, such as in the interior of stars. This text, combining material from lectures and advanced seminars given by the authors over many decades, is a must-have introduction and reference for both newcomers and seasoned researchers alike.
The phenomenon of dynamical symmetry breaking (DSB) in quantum field theory is discussed in a detailed and comprehensive way. The deep connection between this phenomenon in condensed matter physics and particle physics is emphasized. The realizations of DSB in such realistic theories as quantum chromodynamics and electroweak theory are considered. Issues intimately connected with DSB such as critical phenomenona and effective lagrangian approach are also discussed.
Today the notion of the algorithm is familiar not only to mathematicians. It forms a conceptual base for information processing; the existence of a corresponding algorithm makes automatic information processing possible. The theory of algorithms (together with mathematical logic ) forms the the oretical basis for modern computer science (see [Sem Us 86]; this article is called "Mathematical Logic in Computer Science and Computing Practice" and in its title mathematical logic is understood in a broad sense including the theory of algorithms). However, not everyone realizes that the word "algorithm" includes a transformed toponym Khorezm. Algorithms were named after a great sci entist of medieval East, is al-Khwarizmi (where al-Khwarizmi means "from Khorezm"). He lived between c. 783 and 850 B.C. and the year 1983 was chosen to celebrate his 1200th birthday. A short biography of al-Khwarizmi compiled in the tenth century starts as follows: "al-Khwarizmi. His name is Muhammad ibn Musa, he is from Khoresm" (cited according to [Bul Rozen Ah 83, p.8]).
Informational Macrodynamics (IMD) presents the unified information systemic approach with common information language for modeling, analysis and optimization of a variety of interactive processes, such as physical, biological, economical, social, and informational, including human activities. Comparing it with thermodynamics, which deals with transformation energy and represents a theoretical foundation of physical technology, IMD deals with transformation information, and can be considered a theoretical foundation of Information Computer Technology (ICT). ICT includes but is not limited to applied computer science, computer information systems, computer and data communications, software engineering, and artificial intelligence. In ICT, information flows from different data sources, and interacts to create new information products. The information flows may interact physically or via their virtual connections, initiating an information dynamic process that can be distributed in space. As in physics, a problem is understanding general regularities of the information processes in terms of information law, for the engineering and technological design, control, optimization, and development of computer technology, operations, manipulations, and management of real information objects. Information Systems Analysis and Modeling: An Informational Macrodynamics Approach belongs to an interdisciplinary science that represents the new theoretical and computer-based methodology for system informational description and improvement, including various activities in such interdisciplinary areas as thinking, intelligent processes, management, and other nonphysical subjects with their mutual interactions, informational superimpositions, and the information transferred between interactions. Information Systems Analysis and Modeling: An Informational Macrodynamics Approach can be used as a textbook or secondary text in courses on computer science, engineering, business, management, education, and psychology and as a reference for research and industry.
Instrumental techniques for analyzing intrinsically disordered proteins The recently recognized phenomenon of protein intrinsic disorder is gaining significant interest among researchers, especially as the number of proteins and protein domains that have been shown to be intrinsically disordered rapidly grows. The first reference to tackle this little-documented area, Instrumental Analysis of Intrinsically Disordered Proteins: Assessing Structure and Conformation provides researchers with a much-needed, comprehensive summary of recent achievements in the methods for structural characterization of intrinsically disordered proteins (IDPs). Chapters discuss: Assessment of IDPs in the living cell Spectroscopic techniques for the analysis of IDPs, including NMR and EPR spectroscopies, FTIR, circular dichroism, fluorescence spectroscopy, vibrational methods, and single-molecule analysis Single-molecule techniques applied to the study of IDPs Assessment of IDP size and shape Tools for the analysis of IDP conformational stability Mass spectrometry Approaches for expression and purification of IDPs With contributions from an international selection of leading researchers, Instrumental Analysis of Intrinsically Disordered Proteins: Assessing Structure and Conformation fills an important need in a rapidly growing field. It is required reading for biochemists, biophysicists, molecular biologists, geneticists, cell biologists, physiologists, and specialists in drug design and development, proteomics, and molecular medicine with an interest in proteins and peptides.
This book provides a concise introduction to the newly created sub-discipline of solid state physics isotopetronics. The role of isotopes in materials and their properties are describe in this book. The problem of the enigma of the atomic mass in microphysics is briefly discussed. The range of the applications of isotopes is wide: from biochemical process in living organisms to modern technical applications in quantum information. Isotopetronics promises to improve nanoelectronic and optoelectronic devices. With numerous illustrations this book is useful to researchers, engineers and graduate students.
This book presents essential knowledge of car vehicle dynamics and control theory with NI LabVIEW software product application, resulting in a practical yet highly technical guide for designing advanced vehicle dynamics and vehicle system controllers. Presenting a clear overview of fundamental vehicle dynamics and vehicle system mathematical models, the book covers linear and non-linear design of model based controls such as wheel slip control, vehicle speed control, path following control, vehicle stability and rollover control, stabilization of vehicle-trailer system. Specific applications to autonomous vehicles are described among the methods. It details the practical applications of Kalman-Bucy filtering and the observer design for sensor signal estimation, alongside lateral vehicle dynamics and vehicle rollover dynamics. The book also discusses high level controllers, alongside a clear explanation of basic control principles for regenerative braking in both electric and hybrid vehicles, and wheel torque vectoring systems. Concrete LabVIEW simulation examples of how the models and controls are used in representative applications, along with software algorithms and LabVIEW block diagrams are illustrated. It will be of interest to engineering students, automotive engineering students and automotive engineers and researchers.
This book presents results of lifespan prolongation studies obtained from experimental animal models and clinical and epidemiological human investigations. Modern theories, experimental models, and mathematical models of aging are described, as well as factors identified in lifespan prolongation, such as reduced body temperature, calorie- and protein-restricted diets, antioxidants, enterosorption, motor activity, modulators of genome expression, ionizing radiation, vitamins, microelements, and revitalizers. Gerontologists, physiologists, biochemists, and physicians active in the field of aging will find this book to be an interesting addition to their reference library.
Applied Differential Equations with Boundary Value Problems presents a contemporary treatment of ordinary differential equations (ODEs) and an introduction to partial differential equations (PDEs), including their applications in engineering and the sciences. This new edition of the author’s popular textbook adds coverage of boundary value problems. The text covers traditional material, along with novel approaches to mathematical modeling that harness the capabilities of numerical algorithms and popular computer software packages. It contains practical techniques for solving the equations as well as corresponding codes for numerical solvers. Many examples and exercises help students master effective solution techniques, including reliable numerical approximations. This book describes differential equations in the context of applications and presents the main techniques needed for modeling and systems analysis. It teaches students how to formulate a mathematical model, solve differential equations analytically and numerically, analyze them qualitatively, and interpret the results.
This book started as a collection of lecture notes for a course in differential equations taught by the Division of Applied Mathematics at Brown University. To some extent, it is a result of collective insights given by almost every instructor who taught such a course over the last 15 years. Therefore, the material and its presentation covered in this book were practically tested for many years. This text is designed for a two-semester sophomore or junior level course in differential equations. It offers novel approaches in presentation and utilization of computer capabilities. This text intends to provide a solid background in differential equations for students majoring in a breadth of fields. Differential equations are described in the context of applications. The author stresses differential equations constitute an essential part of modeling by showing their applications, including numerical algorithms and syntax of the four most popular software packages. Students learn how to formulate a mathematical model, how to solve differential equations (analytically or numerically), how to analyze them qualitatively, and how to interpret the results. In writing this textbook, the author aims to assist instructors and students through: Showing a course in differential equations is essential for modeling real-life phenomena Stressing the mastery of traditional solution techniques and presenting effective methods, including reliable numerical approximations Providing qualitative analysis of ordinary differential equations. The reader should get an idea of how all solutions to the given problem behave, what are their validity intervals, whether there are oscillations, vertical or horizontal asymptotes, and what is their long-term behavior The reader will learn various methods of solving, analysis, visualization, and approximation, exploiting the capabilities of computers Introduces and employs MapleTM, Mathematica®, MatLab®, and Maxima This textbook facilitates the development of the student’s skills to model real-world problems Ordinary and partial differential equations is a classical subject that has been studied for about 300 years. The beauty and utility of differential equations and their application in mathematics, biology, chemistry, computer science, economics, engineering, geology, neuroscience, physics, the life sciences, and other fields reaffirm their inclusion in myriad curricula. A great number of examples and exercises make this text well suited for self-study or for traditional use by a lecturer in class. Therefore, this textbook addresses the needs of two levels of audience, the beginning and the advanced.
Important findings and decisive breakthroughs in medicine have nearly always encountered fierce opposition, and it took a long time before they were finally recognized as major discoveries. This book describes the circumstances of a revelatory experience made by Dr Karel Fortn in 1957 and its fundamental scientific significance in the struggle against cancer. It is also an attempt to explain why an important breakthrough can be ignored in the light of so much evidence.
Fred Almgren exploited the excess method for proving regularity theorems in the calculus of variations. His techniques yielded Hölder continuous differentiability except for a small closed singular set. In the sixties and seventies Almgren refined and generalized his methods. Between 1974 and 1984 he wrote a 1,700-page proof that was his most ambitious development of his ground-breaking ideas. Originally, this monograph was available only as a three-volume work of limited circulation. The entire text is faithfully reproduced here.This book gives a complete proof of the interior regularity of an area-minimizing rectifiable current up to Hausdorff codimension 2. The argument uses the theory of Q-valued functions, which is developed in detail. For example, this work shows how first variation estimates from squash and squeeze deformations yield a monotonicity theorem for the normalized frequency of oscillation of a Q-valued function that minimizes a generalized Dirichlet integral. The principal features of the book include an extension theorem analogous to Kirszbraun's theorem and theorems on the approximation in mass of nearly flat mass-minimizing rectifiable currents by graphs and images of Lipschitz Q-valued functions.
Fred Almgren created the excess method for proving regularity theorems in the calculus of variations. His techniques yielded Holder continuity except for a small closed singular set. In the sixties and seventies Almgren refined and generalized his methods. Between 1974 and 1984 he wrote a 1,700-page proof that was his most ambitious exposition of his ground-breaking ideas. Originally, this monograph was available only as a three-volume work of limited circulation. The entire text is faithfully reproduced here. This book gives a complete proof of the interior regularity of an area-minimizing rectifiable current up to Hausdorff codimension 2. The argument uses the theory of Q-valued functions, which is developed in detail. For example, this work shows how first variation estimates from squash and squeeze deformations yield a monotonicity theorem for the normalized frequency of oscillation of a Q-valued function that minimizes a generalized Dirichlet integral. The principal features of the book include an extension theorem analogous to Kirszbraun's theorem and theorems on the approximation in mass of nearly flat mass-minimizing rectifiable currents by graphs and images of Lipschitz Q-valued functions.
Rigid Body Dynamics for Space Applications explores the modern problems of spaceflight mechanics, such as attitude dynamics of re-entry and space debris in Earth's atmosphere; dynamics and control of coaxial satellite gyrostats; deployment, dynamics, and control of a tether-assisted return mission of a re-entry capsule; and removal of large space debris by a tether tow. Most space systems can be considered as a system of rigid bodies, with additional elastic and viscoelastic elements and fuel residuals in some cases. This guide shows the nature of the phenomena and explains the behavior of space objects. Researchers working on spacecraft attitude dynamics or space debris removal as well as those in the fields of mechanics, aerospace engineering, and aerospace science will benefit from this book. - Provides a complete treatise of modeling attitude for a range of novel and modern attitude control problems of spaceflight mechanics - Features chapters on the application of rigid body dynamics to atmospheric re-entries, tethered assisted re-entry, and tethered space debris removal - Shows relatively simple ways of constructing mathematical models and analytical solutions describing the behavior of very complex material systems - Uses modern methods of regular and chaotic dynamics to obtain results
This advanced textbook presents an extensive and diverse study of low-energy nuclear physics considering the nucleus as a quantum system of strongly interacting constituents. The contents guide students from the basic facts and ideas to more modern topics including important developments over the last 20 years, resulting in a comprehensive collection of major modern-day nuclear models otherwise unavailable in the current literature. The book emphasizes the common features of the nucleus and other many-body mesoscopic systems currently in the center of interest in physics. The authors have also included full problem sets that can be selected by lecturers and adjusted to specific interests for more advanced students, with many chapters containing links to freely available computer code. As a result, readers are equipped for scientific work in mesoscopic physics.
Despite the rapidly expanding ambit of physical research and the continual appearance of new branches of physics, the main thrust in its development was and is the attempt at a theoretical synthesis of the entire body of physical knowledge. The main triumphs in physical science were, as a rule, associ ated with the various phases of this synthesis. The most radical expression of this tendency is the program of construction of a unified physical theory. After Maxwellian electrodynamics had unified the phenomena of electricity, magnetism, and optics in a single theoretical scheme on the basis of the con cept of the electromagnetic field, the hope arose that the field concept would become the precise foundation of a new unified theory of the physical world. The limitations of an electromagnetic-field conception of physics, however, already had become clear in the first decade of the 20th century. The concept of a classical field was developed significantly in the general theory of relativity, which arose in the elaboration of a relativistic theory of gravitation. It was found that the gravitational field possesses, in addition to the properties inherent in the electromagnetic field, the important feature that it expresses the metric structure of the space-time continuum. This resulted in the following generalization of the program of a field synthesis of physics: The unified field representing gravitation and electromagnetism must also describe the geometry of space-time.
This book provides the first comprehensive analysis of how aerosols form in the atmosphere through in situ processes as well as via transport from the surface (dust storms, seas spray, biogenic emissions, forest fires etc.). Such an analysis has been followed by the consideration of both observation data (various field observational experiments) and numerical modeling results to assess climate impacts of aerosols bearing in mind that these impacts are the most significant uncertainty in studying natural and anthropogenic causes of climate change.
Information Macrodynamics (IMD) belong to an interdisciplinary science that represents a new theoretical and computer-based methodology for a system informational descriptionand improvement,including various activities in such areas as thinking, intelligent processes, communications, management, and other nonphysical subjects with their mutual interactions, informational superimposition, and theinformation transferredbetweeninteractions. The IMD is based on the implementation of a single concept by a unique mathematical principle and formalism, rather than on an artificial combination of many arbitrary, auxiliary concepts and/or postulates and different mathematical subjects, such as the game, automata, catastrophe, logical operations theories, etc. This concept is explored mathematically using classical mathematics as calculus of variation and the probability theory, which are potent enough, without needing to developnew,specifiedmathematical systemicmethods. The formal IMD model automatically includes the related results from other fields, such as linear, nonlinear, collective and chaotic dynamics, stability theory, theory of information, physical analogies of classical and quantum mechanics, irreversible thermodynamics, andkinetics. The main IMD goal is to reveal the information regularities, mathematically expressed by the considered variation principle (VP), as a mathematical tool to extractthe regularities and define the model, whichdescribes theregularities. The IMD regularities and mechanisms are the results of the analytical solutions and are not retained by logical argumentation, rational introduction, and a reasonable discussion. The IMD's information computer modeling formalism includes a human being (as an observer, carrier and producer ofinformation), with a restoration of the model during the objectobservations.
Quantum Heterostructures provides a detailed description of the key physical and engineering principles of quantum semiconductor heterostructures. Blending important concepts from physics, materials science, and electrical engineering, it also explains clearly the behavior and operating features of modern microelectronic and optoelectronic devices. The authors begin by outlining the trends that have driven development in this field, most importantly the need for high-performance devices in computer, information, and communications technologies. They then describe the basics of quantum nanoelectronics, including various transport mechanisms. In the latter part of the book, they cover novel microelectronic devices, and optical devices based on quantum heterostructures. The book contains many homework problems and is suitable as a textbook for undergraduate and graduate courses in electrical engineering, physics, or materials science. It will also be of great interest to those involved in research or development in microelectronic or optoelectronic devices.
This book deals with mathematical modeling, namely, it describes the mathematical model of heat transfer in a silicon cathode of small (nano) dimensions with the possibility of partial melting taken into account. This mathematical model is based on the phase field system, i.e., on a contemporary generalization of Stefan-type free boundary problems. The approach used is not purely mathematical but is based on the understanding of the solution structure (construction and study of asymptotic solutions) and computer calculations. The book presents an algorithm for numerical solution of the equations of the mathematical model including its parallel implementation. The results of numerical simulation concludes the book. The book is intended for specialists in the field of heat transfer and field emission processes and can be useful for senior students and postgraduates.
An authoritative guide to the theory and practice of static and dynamic structures analysis Static and Dynamic Analysis of Engineering Structures examines static and dynamic analysis of engineering structures for methodological and practical purposes. In one volume, the authors – noted engineering experts – provide an overview of the topic and review the applications of modern as well as classic methods of calculation of various structure mechanics problems. They clearly show the analytical and mechanical relationships between classical and modern methods of solving boundary value problems. The first chapter offers solutions to problems using traditional techniques followed by the introduction of the boundary element methods. The book discusses various discrete and continuous systems of analysis. In addition, it offers solutions for more complex systems, such as elastic waves in inhomogeneous media, frequency-dependent damping and membranes of arbitrary shape, among others. Static and Dynamic Analysis of Engineering Structures is filled with illustrative examples to aid in comprehension of the presented material. The book: Illustrates the modern methods of static and dynamic analysis of structures; Provides methods for solving boundary value problems of structural mechanics and soil mechanics; Offers a wide spectrum of applications of modern techniques and methods of calculation of static, dynamic and seismic problems of engineering design; Presents a new foundation model. Written for researchers, design engineers and specialists in the field of structural mechanics, Static and Dynamic Analysis of Engineering Structures provides a guide to analyzing static and dynamic structures, using traditional and advanced approaches with real-world, practical examples.
Throughout human history, we have long encountered the combination of promise, risk, and uncertainty that accompanies emerging technologies. Nanotechnology is a recent example of an emerging technology that promises to drastically improve existing products as well as allow for creative development of new goods and services. This new technology also has its potential downsides. Industry, academia, and regulatory agencies are all working overtime to assess risks accurately while keeping up with the pace of development. Subtle changes in the physicochemical properties of engineered nanomaterials (ENMs) can influence their toxicity and behavior in the environment and so can be used to help control potential ENM risks. This book attempts to encompass the state of the science regarding physicochemical characterization of ENMs. It illuminates the effort to understand these properties and how they may be used to ensure safe ENM deployment in existing or future materials and products.
This book is intended for those who want to work on improving the fitness and conditioning of football players. The contents are written, above all, for the needs of the fitness coaches (strength and conditioning / performance coaches) in football/ soccer, but the needs of the head and assistant coaches have also been covered. This book is a particularly useful tool for coaches working with young categories of football players. The principles for fitness (and conditioning / performance) training are similar for different categories of players, professional (adults) / young players. The following contents, through examples and programmes, explain the principles of the processes of training and transformation of Human Motor Abilities (HMA), which are predominantly recognisable in the football game, and which affect the improvement of the general and specific fitness of football players. For us, as authors of this book, our goal is, through these contents, to enable the coaches to independently understand and set up transformation of Human Motor Abilities in the form of fitness and conditioning trainings. The trainings described are examples of good practice (based on science). After reading the contents of this book, the coach should be able to develop one’s own plan and programme for each kind of training. The future fitness and conditioning training plan should be a flexible plan and should follow the changes that occur in the players; it should be dynamic and adaptable according to the respective conditions. Topics covered: PRE-SEASON PLAN | TRANSFORMATION OF HUMAN MOTOR ABILITIES | TRAINING LOAD + DOSAGE MANAGEMENT | FUNCTIONAL STRENGTH/POWER TRAINING | PERFORMANCE MONITORING | OFF-SEASON- TRAININGS | REHABILITATION (INJURY PREVENTION)
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.