Due to the strong appeal and wide use of this monograph, it is now available in its third revised edition. The monograph gives a systematic treatment of 3-dimensional topological quantum field theories (TQFTs) based on the work of the author with N. Reshetikhin and O. Viro. This subject was inspired by the discovery of the Jones polynomial of knots and the Witten-Chern-Simons field theory. On the algebraic side, the study of 3-dimensional TQFTs has been influenced by the theory of braided categories and the theory of quantum groups. The book is divided into three parts. Part I presents a construction of 3-dimensional TQFTs and 2-dimensional modular functors from so-called modular categories. This gives a vast class of knot invariants and 3-manifold invariants as well as a class of linear representations of the mapping class groups of surfaces. In Part II the technique of 6j-symbols is used to define state sum invariants of 3-manifolds. Their relation to the TQFTs constructed in Part I is established via the theory of shadows. Part III provides constructions of modular categories, based on quantum groups and skein modules of tangles in the 3-space. This fundamental contribution to topological quantum field theory is accessible to graduate students in mathematics and physics with knowledge of basic algebra and topology. It is an indispensable source for everyone who wishes to enter the forefront of this fascinating area at the borderline of mathematics and physics. Contents: Invariants of graphs in Euclidean 3-space and of closed 3-manifolds Foundations of topological quantum field theory Three-dimensional topological quantum field theory Two-dimensional modular functors 6j-symbols Simplicial state sums on 3-manifolds Shadows of manifolds and state sums on shadows Constructions of modular categories
It is a surprising fact that so far almost no books have been published on KAM theory. The first part of this book seems to be the first monographic exposition of this subject, despite the fact that the discussion of KAM theory started as early as 1954 (Kolmogorov) and was developed later in 1962 by Arnold and Moser. Today, this mathematical field is very popular and well known among physicists and mathematicians. In the first part of this Ergebnisse-Bericht, Lazutkin succeeds in giving a complete and self-contained exposition of the subject, including a part on Hamiltonian dynamics. The main results concern the existence and persistence of KAM theory, their smooth dependence on the frequency, and the estimate of the measure of the set filled by KAM theory. The second part is devoted to the construction of the semiclassical asymptotics to the eigenfunctions of the generalized Schrödinger operator. The main result is the asymptotic formulae for eigenfunctions and eigenvalues, using Maslov`s operator, for the set of eigenvalues of positive density in the set of all eigenvalues. An addendum by Prof. A.I. Shnirelman treats eigenfunctions corresponding to the "chaotic component" of the phase space.
One service mathematics has rendered the 'Et moi ...) si j'avait su comment en revenir, human race. It has put common sense back je n'y serais point aile.' Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. ErieT. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
This monograph contains original results in the field of mathematical and numerical modeling of mechanical behavior of granular materials and materials with different strengths. It proposes new models helping to define zones of the strain localization. The book shows how to analyze processes of the propagation of elastic and elastic-plastic waves in loosened materials, and constructs models of mixed type, describing the flow of granular materials in the presence of quasi-static deformation zones. In a last part, the book studies a numerical realization of the models on multiprocessor computer systems. The book is intended for scientific researchers, lecturers of universities, post-graduates and senior students, who specialize in the field of the deformable materials mechanics, mathematical modeling and adjacent fields of applied and calculus mathematics.
This volume presents a systematic and mathematically rigorous exposition of methods for studying linear partial differential equations. It focuses on quantization of the corresponding objects (states, observables and canonical transformations) in the phase space. The quantization of all three types of classical objects is carried out in a unified w
Vladimir Arnold was one of the great mathematical scientists of our time. He is famous for both the breadth and the depth of his work. At the same time he is one of the most prolific and outstanding mathematical authors. This second volume of his Collected Works focuses on hydrodynamics, bifurcation theory, and algebraic geometry.
The material provides an historical background to forecasting developments as well as introducing recent advances. The book will be of interest to both mathematicians and physicians, the topics covered include equations of dynamical meteorology, first integrals, non-linear stability, well-posedness of boundary problems, non-smooth solutions, parame
The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich and Z. Janko, Groups of Prime Power Order, Volume 6 (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
Covers such topics as construction of new knot invariants, stable cohomology of complementary spaces to diffusion diagrams, topological properties of spaces of Legendre maps, application of Weierstrass bifurcation points in projective curve flattenings, classification of singularities of projective surfaces with boundary, and control theory.
This second edition contains nearly 4,000 linear partial differential equations (PDEs) with solutions as well as analytical, symbolic, and numerical methods for solving linear equations. First-, second-, third-, fourth-, and higher-order linear equations and systems of coupled equations are considered. Equations of parabolic, mixed, and other types are discussed. New linear equations, exact solutions, transformations, and methods are described. Formulas for effective construction of solutions are given. Boundary value and eigenvalue problems are addressed. Symbolic and numerical methods for solving PDEs with Maple, Mathematica, and MATLAB are explored.
The KGB Plays Chess is a unique book. For the first time it opens to us some of the most secret pages of the history of chess. The battles about which you will read in this book are not between chess masters sitting at the chess board, but between the powerful Soviet secret police, known as the KGB, on the one hand, and several brave individuals, on the other. Their names are famous in the chess world: Viktor Kortschnoi, Boris Spasski, Boris Gulko and Garry Kasparov became subjects of constant pressure, blackmail and persecution in the USSR. Their victories at the chess board were achieved despite this victimization. Unlike in other books, this story has two perspectives. The victim and the persecutor, the hunted and the hunter, all describe in their own words the very same events. One side is represented by the famous Russian chess players Viktor Kortschnoi and Boris Gulko. For many years they fought against a powerful system, and at the end they were triumphant. The Soviet Union collapsed and they got what they were fighting for: their freedom. Former KGB Lieutenant Colonel Vladimir Popov, who left Russia in 1996 and now lives in Canada, was one of those who had worked all his life for the KGB and was responsible for the sport sector of the USSR. It is only now for the first time that he has decided to tell the reader his story of the KGB�s involvement in Soviet Sports. This is his first book, and it is not only full of sensations, but it also dares to name names of secret KGB agents previously known only as famous chess masters, sportsmen or sport officials. Just a few short years ago a book like this would have been unimaginable. Read this book. It is not only about chess. It is about glorious victory of the great chess masters over the forces of darkness.
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob. Titles in planning include Mark M. Meerschaert, Alla Sikorskii, and Mohsen Zayernouri, Stochastic Models for Fractional Calculus, second edition (2018) Flavia Smarazzo and Alberto Tesei, Measure Theory: Radon Measures, Young Measures and Applications to Parabolic Problems (2019) Elena Cordero and Luigi Rodino, Time-Frequency Analysis of Operators (2019) Kezheng Li, Group Schemes and Their Actions (2019; together with Tsinghua University Press) Kai Liu, Ilpo Laine, and Lianzhong Yang, Complex Differential-Difference Equations (2021) Rajendra Vasant Gurjar, Kayo Masuda, and Masayoshi Miyanishi, Affine Space Fibrations (2022)
The analysis and topology of elliptic operators on manifolds with singularities are much more complicated than in the smooth case and require completely new mathematical notions and theories. While there has recently been much progress in the field, many of these results have remained scattered in journals and preprints. Starting from an ele
Membrane bioenergetics is one of the most rapidly growing areas within physico-chemical biology. Main aspects treated in this book include energy conservation and utilization by membrane-linked molecular mechanisms such as intracellular respiration, photosynthesis, transport phenomena, rotation of bacterial flagella, and the regulation of heat production.
This book is mainly devoted to the dynamics of the one-dimensional nonlinear stochastic waves. It contains a description of the basic mathematical tools as well as the latest results in the following fields: exactly integrable nonlinear stochastic equations, dynamics of the nonlinear waves in random media, evolution of the random waves in nonlinear media and the basic concepts of the numerical simulations in nonlinear random wave dynamics. A brief outline of the localization phenomenon in the nonlinear medium is also given. The approach is interdisciplinary describing the general methods with application to specific examples. The results presented may be useful for those who work in the areas of solid state physics, hydrodynamics, nonlinear optics, plasma physics, mathematical models of micromolecules and biological structures, ?etc. Since many results are based on the inverse scattering technique, perturbation theory for solitons and the methods of the statistical radiophysics, the terminology of the respective fields is used.
This book describes recent progress in the topological study of plane curves. The theory of plane curves is much richer than knot theory, which may be considered the commutative version of the theory of plane curves. This study is based on singularity theory: the infinite-dimensional space of curves is subdivided by the discriminant hypersurfaces into parts consisting of generic curves of the same type. The invariants distinguishing the types are defined by their jumps at the crossings of these hypersurfaces. Arnold describes applications to the geometry of caustics and of wavefronts in symplectic and contact geometry. These applications extend the classical four-vertex theorem of elementary plane geometry to estimates on the minimal number of cusps necessary for the reversion of a wavefront and to generalizations of the last geometrical theorem of Jacobi on conjugated points on convex surfaces. These estimates open a new chapter in symplectic and contact topology: the theory of Lagrangian and Legendrian collapses, providing an unusual and far-reaching higher-dimensional extension of Sturm theory of the oscillations of linear combinations of eigenfunctions.
Earth Sciences, Volume X: Principles of Zoological Micropalaeontology highlights the morphological, phylogenetic and ecological analysis of microfossils. This book is composed of 10 chapters that survey the most important microfossil taxa, their variety of form, evolution, relationships, and distribution. The opening chapter provides an introduction to the historical development of micropalaeontology. The succeeding chapters present the procedures for the collection, preparation, and microstratigraphic analysis of microfossils. The remaining chapters discuss the morphological, ecological, and phylogenetic properties of Radiolaria, Thekamoebae, Foraminifera, Tintinnina, Incertae sedis, Chitinozoa, and Hystrichosphere microfossils. This book is intended as a textbook and as a manual for practicing micropalaeontologists.
This monograph is devoted to the development of a new approach to studying elliptic differential and integro-differential (pseudodifferential) equations and their boundary problems in non-smooth domains. This approach is based on a special representation of symbols of elliptic operators called wave factorization. In canonical domains, for example, the angle on a plane or a wedge in space, this yields a general solution, and then leads to the statement of a boundary problem. Wave factorization has also been used to obtain explicit formulas for solving some problems in diffraction and elasticity theory. Audience: This volume will be of interest to mathematicians, engineers, and physicists whose work involves partial differential equations, integral equations, operator theory, elasticity and viscoelasticity, and electromagnetic theory. It can also be recommended as a text for graduate and postgraduate students for courses in singular integral and pseudodifferential equations.
This book addresses the problems of fracture mechanics of materials with cracks under the loading directed along the cracks. It considers two non-classical fracture mechanisms, namely the fracture of bodies compressed along cracks and the fracture of materials with initial (residual) stresses acting in parallel to the surfaces of cracks location, and presents new approaches (also including combined one) developed in the framework of three-dimensional linearized mechanics of deformable bodies. It then discusses the results of studies on two- and three-dimensional problems for various configurations of crack locations in isotropic and anisotropic materials, and based on these results, critically evaluates the accuracy and applicability limits of the “beam approximation” approach, which is widely used to study various problems of the fracture of bodies under compression along parallel cracks.
The first monograph to treat topological, group-theoretic, and geometric problems of ideal hydrodynamics and magnetohydrodynamics from a unified point of view. It describes the necessary preliminary notions both in hydrodynamics and pure mathematics with numerous examples and figures. The book is accessible to graduates as well as pure and applied mathematicians working in hydrodynamics, Lie groups, dynamical systems, and differential geometry.
“Wonderful, compulsively readable, delicious” personal correspondences, spanning decades in the life and literary career of the author of Lolita (The Washington Post Book World). An icon of twentieth-century literature, Vladimir Nabokov was a novelist, poet, and playwright, whose personal life was a fascinating story in itself. This collection of more than four hundred letters chronicles the author’s career, recording his struggles in the publishing world, the battles over Lolita, and his relationship with his wife, among other subjects, and gives a surprising look at the personality behind the creator of such classics as Pale Fire and Pnin. “Dip in anywhere, and delight follows.” —John Updike
Today the notion of the algorithm is familiar not only to mathematicians. It forms a conceptual base for information processing; the existence of a corresponding algorithm makes automatic information processing possible. The theory of algorithms (together with mathematical logic ) forms the the oretical basis for modern computer science (see [Sem Us 86]; this article is called "Mathematical Logic in Computer Science and Computing Practice" and in its title mathematical logic is understood in a broad sense including the theory of algorithms). However, not everyone realizes that the word "algorithm" includes a transformed toponym Khorezm. Algorithms were named after a great sci entist of medieval East, is al-Khwarizmi (where al-Khwarizmi means "from Khorezm"). He lived between c. 783 and 850 B.C. and the year 1983 was chosen to celebrate his 1200th birthday. A short biography of al-Khwarizmi compiled in the tenth century starts as follows: "al-Khwarizmi. His name is Muhammad ibn Musa, he is from Khoresm" (cited according to [Bul Rozen Ah 83, p.8]).
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.